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ABSTRACT
We discuss constraints on extended technicolour model building, mechanisms for
producing small neutrino masses, and develop a potentially realistic model.

1. Introduction

Recent work1,2 shows that technicolour (TC) theories can be made com-
patible with the observed particle mass spectrum (with ρ close to 1 and without
excessive flavor changing neutral currents (FCNC’s)). Though such an exercise is
interesting as a sort of existence proof, one worries that since there are more param-
eters (gauge groups, gauge couplings, four-fermion couplings, etc.) than observables
it is impossible to tell whether this success is the result of having the qualitatively
correct physics or merely the power of parameter fitting.

To do better we have to construct models with fewer parameters than the
standard model. Such models should make testable predictions for physics below
100 GeV, and have the potential to be ruled out by experiment. In principle an
extended technicolour (ETC) model would fit this bill. In reality it is unlikely that
we would be able to accurately analyze the non-perturbative dynamics involved, so
we might be forced to parameterize some of our ignorance. Even so, we could still
hope to have fewer parameters than observables, and hence a testable model.

2. Constraints on Model Building

There are several constraints that one might like to impose on a realistic
ETC model. First of all, we expect that there should be more than one ETC scale.
The absence of FCNC’s requires that the mass of the gauge boson that connects
the s quark to technifermions be at least 200 TeV, and that the mass of the gauge
boson that connects the s quark to the d quark be at least 1000 TeV. On the other
hand, to obtain a t quark mass above 100 GeV we expect an ETC scale of order 5
TeV. Such arguments suggest three different ETC scales, one for each family.

Another constraint arises from trying to obtain a large t-b mass splitting,
while keeping ρ within 0.5% of 1. To do this without fine tuning the simplest pos-
sibility is to require that the right-handed t and right-handed b be in different reps
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of the ETC group (SU(2)L gauge invariance requires the left-handed t and b to be
in the same representation).

The S parameter can also be worrisome, since experiments seem to be finding
S to be around −1 ± 1, whereas QCD-like TC theories have large positive contri-
butions to S (which grow with the number of technicolours (NTC)). Of course, S
could be quite different in non-QCD-like theories.3 However, the constraint on the
S parameter seems to suggest that NTC should be kept as small as possible, i.e.
NTC = 2. Recently Sundrum4 has shown that vacuum alignment need not be a
problem for SU(2)TC .

Eichten and Lane,5 have shown that the absence of a visible axion implies
a limit on the number of spontaneously broken global U(1) symmetries. This led
them to require quark-lepton unification in ETC models. In general, a realistic ETC
theory should not have any exact, spontaneously broken, global symmetries, since
this will lead to massless Goldstone bosons. Thus we cannot have repeated reps of
the ETC gauge group.

Finally an ETC theory must explain why neutrinos are so light.

3. A Word About MAC

The established folklore states that fermion condensates occur in the most
attractive channel (MAC),6 which is determined by one gauge boson exchange.
Peskin6 has shown that when the gauge symmetry is unbroken, the MAC analysis
is equivalent to minimizing an effective potential truncated at two loops. However,
when the gauge bosons do acquire masses from the fermion condensate there are
pure gauge boson contributions to the effective potential which have not yet been
considered.

Since we have no reliable theoretical guide for which fermion condensates
actually form, we will take a more phenomenological approach, i.e. we will allow
condensates that are consistent with producing the standard model as a low energy
effective theory.

4. Why Are Neutrinos Light?

A simple explanation for the fact that neutrinos (ν’s) are extremely light
was originally pointed out by Sikivie et. al.7 Consider the following left-handed and
charge-conjugated right-handed fermions labeled with their SU(3)ETC ⊗ SU(2)L ⊗
U(1)Y charges:

EL, τL; NL, ντL ∼ (3,2)−1

Ec
R, τ c

R ∼ (3,1)2

N c
R, νc

R ∼ (3,1)0

N c
1R, νc

1R ∼ (3,1)0

N c
2R, νc

2R ∼ (3,1)0 ,



where a 3 of SU(3)ETC corresponds to two technicolours and one family. Note that
there are two extra sets of N c

R’s and νc
R’s in conjugate reps. If (N c

R,νc
R) condenses with

(N c
1R,νc

1R) then SU(3)ETC breaks down to SU(2)TC , and it is (N c
2R,νc

2R) which survive
to be the partners of (NL, ντL). Now the usual one-ETC gauge boson exchange graph
that feeds down masses to the τ will not give a mass to the ντ , since this graph is
identically zero. To feed down a mass to the ντ there must be some mixing between
different ETC gauge bosons. If the required mixing can only be produced by a loop
containing ν’s and N ’s, and we now consider the low-energy effective theory where
the heavy ETC gauge bosons and N ’s have been integrated out, then we see that
the diagram for the neutrino mass consists of a four-ν interaction vertex with two
lines closed off by a mass insertion, a form familiar from the Nambu–Jona-Lasinio
gap equation. Thus if the effective four-ν coupling constant is sub-critical, the ντ

stays massless. However, if there are other fermions that can produce the mixing,
then the mass of the ντ will be suppressed relative to the mass of the τ by a factor
of the mixing mass squared over the ETC gauge boson mass squared.

5. A Recipe for an ETC Model

We will now proceed to construct an ETC model. We will assume that the
TC group is SU(2)TC , and that there is one family of technifermions. We will require
that: 1) there are no exact non-Abelian global symmetries, 2) quarks and leptons
are unified, 3) fermions appear only in antisymmetric irreps, (then the model only
contains 3’s and 3’s of colour.8) 4) all gauge anomalies vanish. With these require-
ments we can proceed rather straightforwardly. We will gauge as many symmetries
as possible without inducing proton decay; this can be done by putting all 20 SU(2)L

doublets in a single representation. A search for the smallest irrep of the smallest
gauge group produces the 36 of SU(9). The simplest way to include the charge-
conjugated right-handed fermions is to have two 36’s, but this fermion content by
itself would lead to no isospin breaking, and no mixing angles in the CKM matrix.
This disaster can be avoided if we also add in extra fermions that can mix with
some components of the 36’s. The remaining antisymmetric irreps of SU(9) are:
the 9, the 84, and the 126. The 9 is too small to be interesting, so we can add an
84 and an 84 or a 126 and a 126.

We can now explicitly write down an ETC model. The gauge group is SU(9)⊗
SU(2)L ⊗ U(1)R, and we will take the fermion content to be:

(36,2)0 (126,1)0

(36,1)−1(36,1)1 (126,1)0 .

The remaining content of the model lies in specifying the pattern of symmetry
breaking. As we have mentioned before we are forced to proceed phenomenologicaly,
so without further adue we assume that a condensate in the channel (36, 1)1 ×
(36, 1)−1 → (126, 1, )0 forms around 104 TeV. Below 104TeV, the gauge symmetry
is then broken down to SU(5)ETC ⊗ SU(4)PS ⊗ SU(2)L ⊗ U(1)R, where PS denotes
the usual Pati-Salam group.



The fermion content of the theory below 104 TeV is:

(5,4,2)0 (10,1,2)0 (1,6,2)0

(5,4,1)−1(5,4,1)1 (10,1,1)−1(10,1,1)1

(5,4,1)0 (10,6,1)0(10,4,1)0 (5,1,1)0(1,1,1)0

(5,4,1)0 (10,6,1)0(10,4,1)0 (5,1,1)0(1,1,1)0 ,

where the first two lines correspond to the 36 and 36’s respectively. Next we imag-
ine that a condensate forms in the channel (10,6,1)0×(5,4,1)1 → (5,4,1)1 around
1000 TeV. This breaks the gauge symmetry down to SU(4)ETC⊗SU(3)C⊗SU(2)L⊗
U(1)Y . We can now see that the (5,4,2)0, the (5,4,1)−1, and the (5,4,1)−1 con-
tain particles with quantum numbers corresponding to three families of ordinary
fermions (plus νR’s) and one family of technifermions. Note that the first family
splits off at this scale. We can also see why νc

R’s and right-handed down-type quarks
(dc

R’s) are special in this model. Singlets under SU(4)PS ⊗ SU(2)L ⊗ U(1)R will
have the standard model quantum numbers of νR’s, while particles that transform
as (6,1)0 under SU(4)PS ⊗ SU(2)L ⊗ U(1)R will split into particles with standard
model quantum numbers (3,1)2/3 and (3,1)−2/3 which correspond respectively to
dc

R’s and an exotic quark which can obtain a mass with a dc
R that is gauge invariant

under SU(3)C ⊗ SU(2)L ⊗ U(1)Y . In fact the condensate which forms at 1000 TeV
generates just such a mass connecting a (4,3,1)2/3 with a a(4,3,1)−2/3. Thus there
will be extra mixing available for νc

R’s and dc
R’s.

The next stage of breaking is taken to occur around 100 TeV, where a
condensate forms in the channel (4,1,2)0 × (6,1,2)0 → (4,1,1)0, which breaks
the gauge symmetry down to SU(3)ETC ⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The second
family splits off at this scale. Once all the group decompositions are performed
we see that we have the correct fermion content to perform the trick discussed
in section 4, not only for νc

R’s, but also for the dc
R’s. Thus at the lowest ETC

scale, around 10 TeV, we have condensates forming in the following channels:
(3,3,1)2/3 × (3,3, 1)−2/3 → (3,1,1)0 (i.e. “dc

R”’s), (3,1,1)0 × (3,1,1)0 → (3,1,1)0

(i.e. “νc
R”’s), and (3,1,2)0× (3,1,2)0 → (3,1,1)0. This breaks the gauge symmetry

down to SU(2)TC⊗SU(3)C⊗SU(2)L⊗U(1)Y , and we have a one family TC theory.
It should be noted that the mechanisms for generating the masses of the t

and the b are totally different. The t gets its mass through the standard one ETC
gauge boson exchange, while the b mass is suppressed by the trick of Sikivie et. al.,
also the bc

R mixes with exotic quarks. Thus this model has no problem accomodating
a large t-b mass splitting, but it still remains to explain the t-τ mass splitting. As
with the first two families, we can expect about a factor of 10 enhancement from
QCD and walking effects.9 The remaining factor of 10 ehancement could arise from
a 10% “fine” tuning of four-fermion couplings in the effective theory below 10 TeV.2

We also note that our choice of fermion content allows us to implement
the Nelson-Barr solution to the strong-CP problem.10 The fundamental theory is
assumed to be CP conserving. If CP is spontaneously broken by complex phases in
the masses of particles coming from the 126, then CP violating phases will appear



in the CKM matrix, but the determinant of the mass matrix can be real, so the
effective strong CP violating parameter θ is identically zero.

6. Conclusions

We have constructed a potentially realistic (i.e. not obviously wrong) ETC
model, which incorporates all the right ingredients: mt � mb, mν ≈ 0, a family
hierarchy, no bad FCNC’s, no massless techniaxion, and no strong CP problem.
It remains to be seen whether this model can survive a more detailed scrutiny, in
particular whether it can produce the observed masses and mixing angles.
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