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Abstract

We describe how isospin splitting and techniquark-technilepton splitting in

one-family technicolor models can reduce the predicted value of the electroweak

radiative correction parameter S, without making a large contribution to the

T parameter.

1 Introduction

Recent work [1, 2, 3] has shown that the electroweak radiative correction parameter

S typically receives positive contributions in theories where QCD-like technicolor

(TC) interactions spontaneously break the electroweak gauge symmetry. These

contributions grow with the number of technicolors NTC and the number of tech-

nicolored weak doublets. Experiments, however, seem to be finding S to be very

small or even negative [2, 4]. In TC theories with non-QCD-like dynamics, the value

of S could be smaller [5]. However, it is difficult [3] to reliably estimate S in such

theories, because we cannot use QCD as an “analog computer”. There also exist

mechanisms for producing negative values for S in certain TC models [6]. Thus,

while it is an open question whether there are realistic TC models that predict
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an acceptably small value for S, previous work suggests that this can be difficult,

especially in models with more than one doublet. In particular, one-family models,

which are attractive in their economical use of ETC gauge bosons, appear to be

disfavored by the preceding discussion.

However, previous work on estimating S in models with one family of tech-

nifermions has assumed that all the technifermions are approximately degenerate

in mass, and hence that isospin is a good symmetry. In this letter we point out

that technifermion degeneracy is not very likely in realistic one-family models, and

furthermore that such non-degenerate technifermions can significantly reduce S,

without making the weak-isospin-violating-parameter T too large.

In the next section we discuss the spectrum of technifermions in realistic

one-family models. In section 3, we estimate the effect that this has on S and T . In

section 4 we present our conclusions and some speculations on possible experimental

signatures for the class of TC models considered here.

2 The Spectrum of Technifermions

In order for a model of electroweak symmetry breaking to be realistic, one must

explain not only how the W ’s and Z get their masses (which TC does well) but also

why ordinary fermions have such a bizarre mass spectrum. In the TC context this

means that one must have not only a model of TC, but also a model of extended

technicolor (ETC) interactions which feed masses down to ordinary fermions from

technifermion masses. Getting the correct masses for ordinary fermions is partic-

ularly a problem in models with one family of technifermions if one assumes that
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there is only one ETC mass scale for each ordinary family. Fermion masses are

naively expected to be roughly g2
ETC4πf3/M2, where f is the Nambu-Goldstone

boson (NGB) decay constant, M is the mass of the ETC gauge boson, and gETC

the ETC gauge coupling. It is then difficult to see how one can arrange for the t

quark to have a mass around 150 GeV, while the τ lepton has a mass of 1.8 GeV,

when both masses arise through the exchange of the same ETC gauge boson.

A possibility is that QCD interactions in concert with a near-critical ETC

interaction can greatly enhance the masses of quarks over leptons [7, 8]. One cal-

culation [8] found that quark masses could be up to two orders of magnitude larger

than lepton masses, without excessive fine-tuning of the ETC interaction. The

same would then be true for techniquark and technilepton masses renormalized at

the ETC scale. At TeV energies and below, this QCD enhancement also makes the

techniquarks (U ,D) heavier than the technileptons (N ,E), but by a much smaller

factor, say of order 3-5. We note that the bulk of the W and Z masses in such a

model would come from the techniquarks, since, for example, the mass of the Z is

given to lowest order by

M2
Z =

g2 + g′2

4

(
1
2
f2

N +
1
2
f2

E + 3f2
Q

)
, (1)

where fN , fE , and fQ are the NGB decay constants associated with NGB’s com-

posed of technineutrinos, technielectrons, and techniquarks respectively. Here g and

g′ are the SU(2)L and U(1)Y gauge couplings. We expect the NGB decay constants

to have ratios similar to corresponding ratios of TeV-scale technifermion masses.

Since T is small, one must require in such a model (with the techniquarks

dominating the weak-scale physics) that weak isospin symmetry is not broken too
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badly for the techniquarks at TeV scales and below. This can be difficult with the

very different t and b quark masses which must be arranged for in the theory, since

the U and D masses at the ETC scale are typically on the order of the t and b

masses. One way to arrange the t-b hierarchy, and yet to keep the U and D masses

close to each other at TeV scales and above, is to have different ETC scales for the t

and b [9]. Another way is through extra mixing for the b (e.g. a generalization of the

scenario in reference [10]). In this paper, it will be assumed that some mechanism

of this sort leads to a relatively small splitting between the TeV-scale U and D

masses.

Since the lighter technileptons make only a small contribution to the gauge

boson masses, however, the technielectrons and technineutrinos are allowed to have

substantially different TeV-scale masses. That they should be different is natural

in an ETC theory, which must explain the large splitting between neutrinos and

charged leptons. However one arranges for this, it must involve different ETC

couplings for the technielectron and technineutrino. If the ETC interactions are

near-critical (in order to get a large t-τ splitting) then they can have a potentially

large effect, and we expect that the technielectron and the technineutrino will have

significantly different masses. In what follows we will assume that, as in the ordinary

lepton pattern, the technineutrino will be lighter than the technielectron.

Thus we expect that in a realistic one-family model (without a plethora of

ETC scales), there will be a hierarchy of technifermion masses. At TeV scales and

below, we expect to have heavy techniquarks which are approximately degenerate,

a much lighter technielectron, and an even lighter technineutrino. If the bulk of the

W and Z masses is to come from the techniquarks through equation 1, then using a

4



naive scaling from QCD, the TeV-scale masses of the U and D can be estimated to

be approximately 860/
√

NTC GeV. For purposes of our numerical estimates, we will

use NTC = 2 (which minimizes S). The main constraint on the technilepton masses

is that they must be larger than roughly MZ/2. For our estimates we will take the

mass of the technielectron E to be 150 GeV and the mass of the technineutrino N

to lie in the range 50 to 150 GeV.

It should be pointed out that this pattern of mass scales is different from that

envisaged in conventional one-family models. The intrinsic scale of TC (which we

take to be around 100 GeV) is smaller than is usually considered, since techniquarks

receive a large part of their masses from near-critical ETC (together with QCD)

interactions. We are thus assuming that ETC interactions have a major effect on

the dynamical, TeV-scale technifermion masses, rather than being a small pertur-

bation. In the next section we will estimate the effect that this unusual spectrum

of technifermions has on the S and T parameters.

3 Precision Electroweak Measurements

We first estimate the value of S in realistic one-family technicolor models, as de-

scribed above. The S parameter corresponds to a certain term in the chiral La-

grangian description of the electroweak interactions [2, 11]. It is generated by inte-

grating out everything except the standard model corrections themselves. This will

include contributions from the pseudo-Nambu-Goldstone bosons (PNGB’s), referred

to here as the “low-energy” contributions, as well as “high-energy” contributions

from the techniquarks and technileptons.
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In order to calculate the PNGB contribution, we must first estimate the spec-

trum of PNGB’s. When discussing one-family TC models, it is often assumed that

the approximate global chiral symmetry is SU(8)L⊗SU(8)R⊗U(1)V (correspond-

ing to 3 techniquark doublets, and one technilepton doublet)1. The large splitting in

technifermion masses discussed in the last section indicates that in the type of mod-

els we are discussing, the approximate global chiral symmetry of one-family of tech-

nifermions is rather2 SU(6)L⊗SU(6)R⊗SU(2)L⊗U(1)2R⊗U(1)8L⊗U(1)8R⊗U(1)V .

The U(1)8L and U(1)8R correspond to the generators of SU(8)L and SU(8)R which

are proportional to diag(1, 1, 1, 1, 1, 1,−3,−3), and U(1)2R corresponds to the diag-

onal generator of SU(2)R. TC interactions spontaneously break this global chiral

symmetry to SU(6)V ⊗U(1)2V ⊗U(1)8V ⊗U(1)V . Thus instead of having 60 PNGB’s

as is usually assumed, we have only 36. The explicit breaking of SU(8)L ⊗ SU(8)R

is so large here that the color triplet PNGB’s usually present in one-family models

are not expected to exist.

The PNGB’s and NGB’s can thus be enumerated as follows (we display their

quantum numbers in terms of technifermion fields):

Θα
a ∼ Qγ5λaτ

αQ ,

Θa ∼ Qγ5λaQ ,

P±
Q ∼ Qγ5τ

±Q ,

P 3
Q ∼ Qγ5τ

3Q ,

P±
L ∼ L

1
2
(1− γ5)τ±L , (2)

1It is assumed here that TC and/or the near-critical ETC dynamics distinguishes between
technifermions and anti-technifermions [12]. For the SU(2) TC group to be employed in our
numerical estimates, it is the ETC interaction that must provide this distinction [13].

2The 6 corresponds to the techniquarks, and the 2 to the technileptons.
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P 3
L ∼ Lγ5τ

3L ,

P 0 ∼ Qγ5Q− 3Lγ5L ,

where Q represents the techniquarks, L the technileptons, the λa’s are SU(3)C

generators, and the τα’s are Pauli matrices. The NGB’s which are eaten by the

W ’s and Z are linear combinations of the P ’s. The PNGB mass eigenstates are

formed from the orthogonal combinations (i.e. the coupling to an electroweak gauge

boson vanishes). In general there is mixing between the P 3’s and the P 0, which is

model dependent. In the limit of large isospin splitting we expect that the mass

eigenstates will be approximately PN ≈ Nγ5N and PE ≈ Eγ5E, with a small

admixture of techniquarks.

The PNGB contribution to S comes from loops of the Θα
a ’s and the P±’s. It

is given by [2, 15]:

SPNGB =
1
6π

[
ln
(

Λχ

MP±

)
+ 8 ln

(
Λχ

MΘα
a

)]
, (3)

where Λχ is the ultraviolet cutoff scale in the loop integration. We take Λχ to be

the scale where SU(6)L⊗SU(6)R chiral perturbation theory breaks down, which is

roughly 4πfQ/
√

6 ≈ 720 GeV. Using this cutoff probably overestimates the contri-

bution from the P± loop, since these PNGB’s are mainly composed of the (lighter)

technileptons, and thus should be associated with a smaller decay constant, and

hence a lower cutoff. The mass of the P± is very model dependent since it arises

mainly through ETC interactions. This means that the squared mass is proportional

to technifermion condensates, and is thus sensitive to details of the TC dynamics,

e.g. whether the TC coupling is running or walking. Experimentally we know that
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the P± must be at least as heavy as ≈MZ/2. We will take the range to be

50GeV < MP± < 150GeV . (4)

Fortunately, since the P± makes only a small contribution to S, our final results

are not that sensitive to this uncertainty. The mass of the Θα
a ’s has been estimated

in QCD-like TC theories [12] to be 245-315 GeV. This estimate relies on scaling up

a QCD dispersion relation. If the TC dynamics are not QCD-like, then this mass

estimate will be modified. We will consider the range

250GeV < MΘα
a

< 500GeV . (5)

With this range of PNGB masses, we find 0.2 < SPNGB < 0.6.

The calculation of the “high-energy” contribution to S is more difficult, since

it directly involves non-perturbative physics. The two methods used in the past

[2, 5] (scaled-up QCD data from dispersion relations or chiral Lagrangians, or non-

local chiral quark models) have relied on the assumption that isospin is not broken.

Here we are assuming that isospin is badly broken for technileptons. The non-local

chiral quark model could be generalized to overcome this difficulty, but not without

considerable effort. Even a modified dispersion relation approach would not be

straightforward, since the spectrum is unlike that of QCD.

A naive approach, neglecting strong technicolor interactions, will be adopted

here. We note that in the case of one-doublet3, QCD-like TC theories, both methods

mentioned above arrive at a value for the “high-energy” contribution to S that is

about twice as large as the perturbative, one-technifermion loop estimate (using

constant technifermion masses). We also note that studies of walking [5] TC arrive
3Where there is no PNGB contribution to S.
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at values of S that are as small as half the scaled-up QCD result, i.e. approximately

equal to the perturbative result (using constant masses). On the other hand, in the

case of one-family QCD-like theories (with NTC = 3) the dispersion-relation result

for the “high-energy” piece (i.e. S−SPNGB) is about half as big as the perturbative

result. Here we will simply calculate the perturbative (one-technifermion loop)

contribution, using twice and one half of this value to estimate the range of possible

values for the “high-energy” contribution.

With this assumption, the calculation of the “high-energy” techniquark con-

tribution to S is straightforward. We use the definition [2]

STQ ≡ −8πΠTQ′
3Y (q2 = 0) , (6)

where

ΠTQ
3Y = (qU − qD) ΠTQ

LR , (7)

qU and qD are the electromagnetic charges of the U and D, and the prime indicates

a derivative with respect to q2. It has been assumed here that isospin is a good

approximate symmetry for techniquarks. The Π’s refer to the coefficients of igµν in

vacuum polarizations (with gauge couplings factored out, as usual), and L and R

refer to left- and right-handed currents. Using constant masses for the perturbative

calculation leads to the standard result [2]:

STQ =
NTCNC

6π
. (8)

With NTC = 2, our estimated range is therefore 0.2 < STQ < 0.6.

We turn next to the calculation of the contribution to S from technileptons.

We will, of course, not assume that isospin is a good approximate symmetry for the
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technileptons. We note that the technilepton masses being employed here are too

small for the original4 definition of S to be justified. The contribution to S from

the technileptons is therefore defined as (cf. ref. [14])

STL ≡ −8π
ΠTL

3Y (q2 = M2
Z)−ΠTL

3Y (q2 = 0)
M2

Z

. (9)

We note that equation (9) reduces to the same form as equation (6) when the masses

of the technileptons become much larger than MZ . Now,

ΠTL
3Y =

Y

2

(
ΠN

LL −ΠE
LL

)
+ qNΠN

LR − qEΠE
LR . (10)

As we will see, it is the first term in equation (10) that can give a negative contri-

bution to S.

The required one-loop results (with constant masses) are well known [16]:

ΠLL(m1,m2, q
2) =

−1
4π2

∫ 1

0
dx ln

(
Λ2

m2 − x(1− x)q2

)(
x(1− x)q2 − 1

2
m2
)

,

ΠLR(m1,m2, q
2) =

−m1m2

8π2

∫ 1

0
dx ln

(
Λ2

m2 − x(1− x)q2

)
, (11)

where Λ is an ultraviolet cutoff, m1 and m2 are the masses of the fermions in the

loop, and m2 = xm2
1 + (1− x)m2

2. This leads to:

STL =
−NTC

π

∫ 1

0
dx ln

(
M2

E − x(1− x)M2
Z

M2
N − x(1− x)M2

Z

)
x(1− x)

+
NTC

2π

M2
N

M2
Z

∫ 1

0
dx ln

(
M2

N

M2
N − x(1− x)M2

Z

)

+
NTC

2π

M2
E

M2
Z

∫ 1

0
dx ln

(
M2

E

M2
E − x(1− x)M2

Z

)
(12)

Thus we find that the technileptons can give a negative contribution to S. For

example with NTC = 2, ME = 150 GeV, and MN = 50 GeV, we obtain STL = −0.2,

and thus an estimated range of −0.1 to −0.4.
4i.e. keeping only the leading term in a Taylor series expansion of the vacuum polarization

10



Putting all three contributions (equations (3), (8), (12)) together, we arrive

at the estimates given in Table 1, for the smallest TC group: SU(2)TC . Recent

fits to experimental data [4] (with a t quark mass of 140 GeV, and translating5

to MHiggs = Λχ) lead to upper limits on S (at the 90% confidence level) that are

typically no more than a few tenths. The reduction in the theoretical prediction

discussed here could therefore be important in attaining agreement with experiment.

MN STQ STL S

50 GeV 0.2 - 0.6 −0.1 - −0.4 −0.02 - 1.1
100 GeV 0.2 - 0.6 0.01 - 0.03 0.4 - 1.3
150 GeV 0.2 - 0.6 0.06 - 0.2 0.5 - 1.5

Table 1: Estimates of S = SPNGB + STQ + STL, for different values of the tech-
nineutrino mass (MN ), with ME = 150 GeV, and NTC = 2. We have used
0.2 < SPNGB < 0.6.

It can be seen from equation (10) that if we were doing a more realistic calcu-

lation, taking into account the strong interaction dynamics of the technifermions, it

is the techni-ρ composed of technineutrinos (which would be lighter than the techni-

ρ composed of technielectrons) that gives a negative contribution to S. If techni-ρ’s

are lighter than standard estimates suggest [3], then the negative contribution to S

will be enhanced.

We next discuss the computation of T in realistic one-family TC models, aris-

ing from isospin splitting in PNGB’s and technileptons. The point of the estimate is

to show that, although there is a large isospin breaking for technileptons, this does
5Since TC is an alternative to the standard model Higgs sector, one must subtract off from S

the Higgs contribution to vacuum polarizations which is already included in standard model fits to
data, so the value of S depends on the Higgs mass used in a given fit.
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not lead to a large contribution to T . Since the bulk of the W and Z masses come

from the heavier techniquarks, the large isospin breaking in the (relatively light)

technileptons gives a much smaller contribution than if the technileptons were the

sole contributors to the gauge boson masses.

We again use one-technifermion-loop graphs (with constant masses) to es-

timate the “high-energy” contribution, and chiral perturbation theory to estimate

the “low-energy” contribution. First recall that [2]

αT ≡ ∆ρ∗ ≡
g2 + g′2

M2
Z

[Π11(0)−Π33(0)] . (13)

We first consider the “high-energy” technilepton contribution to T . The

perturbative result for one fermion loop is [17]:

αTTL =
(
g2 + g′2

)
NTC

64π2M2
Z

[
M2

N + M2
E −

4M2
NM2

E

M2
N −M2

E

ln
(

MN

ME

)]
. (14)

Thus for NTC = 2, ME = 150 GeV, and MN = 50 GeV, we find ∆ρTL = αTTL =

0.26%. We take our estimated range to be from one half of to twice this value:

0.1% < ∆ρTL < 0.5%. If the isospin splitting is smaller, then these numbers

become even smaller. For MN = 100, for example, we find 0.03% < ∆ρTL < 0.1%.

The contribution to T from PNGB’s is zero [15], unless there is mass splitting

within isospin multiplets. Since there is a large isospin splitting for technileptons,

we should expect some contribution from the PNGB’s composed of technileptons.

We assume that the PNGB isospin eigenstate (I = 1, I3 = 0) is given by the

linear combination of mass eigenstates cθPN −sθPE . For maximal isospin breaking,

cθ = sθ = 1/
√

2. Using the results in ref. [15], we find
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αTPNGB =

g2 + g′2

32π2M2
Z


c2
θ

∫ 1

0
dy ∆N ln

(
Λ2

χ

∆N

)
+ s2

θ

∫ 1

0
dy ∆E ln

(
Λ2

χ

∆E

)

−M2
P± ln

(
Λ2

χ

M2
P±

)
 , (15)

where

∆N = M2
PN

+ (1− y)(M2
P± −M2

PN
) ,

∆E = M2
PE

+ (1− y)(M2
P± −M2

PE
) . (16)

We will examine the plausible and broad range of masses given by equation (4), and

by

M2
P± < M2

PE
< 2M2

P± , (17)

10GeV < MPN
< MP± . (18)

Taking cθ = sθ = 1/
√

2, we find that the PNGB contribution to ∆ρ∗ is −0.3% <

∆ρPNGB < 0.2%. Thus the contribution to ∆ρ∗ ≡ αT from technileptons and

PNGB’s (for the parameters we have considered above) is in the following range:

−0.3% < ∆ρTL + ∆ρPNGB < 0.7% . (19)

Recent global fits to the data [4], show that most of the above range is experimentally

allowed.

4 Conclusions

We have argued that in realistic one-family TC models the techniquarks will be much

heavier than technielectrons, which in turn will be much heavier than technineutri-

nos. We have estimated the possible effects on precision electroweak measurements
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that arise in TC models of this type, and noted that S can be substantially smaller

than traditional estimates suggest.

We note that if technineutrinos are really as light as we have been considering

in this letter, then the techni-ρ composed of technineutrinos (ρN ) will also be light,

presumably in the range 100-300 GeV. Such a particle could provide a spectacular

signal at LEP II or, if it is somewhat heavier, at the next e+e− collider or the SSC.

This would be the first experimental signature of the type of model being considered

here. We expect the following ρN decay modes (in order of predominance, if kine-

matically allowed): PN pairs (which in turn decay into third generation fermions),

PNZ , P±W∓, W±W∓, and ZZ (cf. ref [18]). If the ρN is too light for the pos-

sibilities listed above, then it will be extremely narrow, and decay predominantly

into quarks and leptons through the Z, and also (with a small branching fraction)

into third-generation fermions through an ETC gauge boson.
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