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Outline

• How do we decide if there are bubble collisions in CMB data?

• Review of Bayesian statistics.

• What are we testing? (model assumptions)

• An analysis strategy.
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P (Model,Θ | data)

Bayesian statistics

• The goal:

P (Model,Θ | data) = P (Θ)P (data |Model,Θ)

P (data |Model)

• Bayes’ Theorem:

�
P (Θ)dΘ = 1

P (data |Model)

P (Θ)

P (data |Model,Θ)

P (data |Model) =

�
dΘP (Θ)P (data |Model,Θ)

• Theory prior:

• Evidence (model averaged likelihood):

• Likelihood:

How should I bet?
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P (data |Model,Θ)

Bayesian statistics

• The likelihood is used to quantify how consistent data is with a set of 

model parameters.

exclusion plots

• This does NOT tell us how we should rank competing theories trying to 

describe the same data. 

• To do so, we can apply Bayes’ theorem at the level of Models:

P (Model | data) = P (Model)P (data |Model)

P (data)
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Bayesian model selection

• Let’s say I have a model that fits the data fairly well, should I 

introduce a more complicated model that might fit it even better?

P (Model 1 | data)
P (Model 0 | data) =

P (Model 1)P (data |Model 1)

P (Model 0)P (data |Model 0)
=

P (data |Model 1)

P (data |Model 0)

• We can decide by looking at the evidence ratio:

• The evidence naturally implements Occam’s razor: the simpler model should 

be favored. Tension between volume of parameter space and goodness of fit.

P (data |Model) =

�
dΘP (Θ)P (data |Model,Θ)
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Bayesian model selection

• A model is specified both by:

• The predictions for the data given a particular set of parameters     . 

• A prior            that specifies what values these parameters can take.     
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• What kinds of parameters specify the collision model?  

Modeling bubble collisions
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FIG. 4: The two classes of potential studied in AJT. The false vacuum in each case can decay into another high energy vacuum
or to an inflating region of the potential. Potentials of the type shown on the left yield large-field models of inflation, in which
the field rolls over a super-planckian distance. Potentials of the type shown on the right yield small-field models of inflation,
where the field loiters near a critical point of the potential during inflation (this is also referred to as ‘Accidental inflation’ [40].)

FIG. 5: The simulated collision of two identical observation
bubbles generated from a large-field type potential (sketched
in the left panel of Fig. 4). To the future of the collision,
the surfaces of constant-field are well fit by hyperbolas, im-
plying that a boost symmetry of the field configuration is
spontaneously generated. The field remains in the inflation-
ary region of the potential after the collision.

‘bubble.’ The kick experienced by the field is similar to
the dynamics responsible for ending inflation to the fu-
ture of a collision in the small field models studied by
AJT. This calculation is reproduced (in 1+1D) in Fig-
ure 8.

3. Semi-analytic analysis

An alternative study of the behavior of inflation to
the future of a collision was performed in CKL2. The
authors analyzed the behavior of a test-field (meant to
describe the inflaton) in the background geometry of the
thin-wall collision spacetime. The test-field was fixed to
be constant along the post-collision domain wall, and to
evolve along the open-slicing surfaces of constant τ out-
side of the future light cone of the collision. The field
is matched across a null wall following this lightcone,

and this forces the surfaces of constant field to be ei-
ther advanced or retarded from those outside the region
influenced by the collision, depending on the underlying
potential landscape. This leads to a slightly different
number of e-folds of inflation in different regions of the
bubble. In this calculation, where spacetime expansion
is taken into account, it can again be confirmed (see AJ)
that infinite spacelike surfaces of homogeneity develop to
the future of the collision at sufficiently late times. We
therefore expect that the habitable volume to the future
of at least some types of collisions can be infinite.

4. Future directions

Currently, numerical analyses of bubble collisions re-
veal a number of important qualitative results (e.g. that
observers can exist to the future of at least some col-
lision types), but do not provide a detailed quantitative
foundation upon which to base conclusions about the ob-
servability of ‘detectable’ or ‘falsifiable’ collisions. Some
promising extensions for future work include:

• Simulations including gravitational effects, in
which the metric describing the bubble interior af-
ter a collision could be solved for precisely. Using
such a model, it is plausible that one could make
quantitative predictions for the deviations from ho-
mogeneity and isotropy in the future of a collision.

• Multi-field potentials. Depending on the assumed
couplings, it is possible that colliding bubbles do
not even interact.

• Including interaction with radiation and other
fields. Again, depending on the assumed under-
lying theory, colliding bubbles might produce a va-
riety of debris, and interact in different ways.

• Nucleation rates.

• Cosmology in our bubble.

• Properties of colliding bubbles.

• Kinematics.

• Our position relative to collisions.
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• What kinds of parameters specify the collision model?  

Modeling bubble collisions

• Global properties of the collision spacetime.

• Observed properties of the collision spacetime.
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Modeling bubble collisions

• Given unlimited computing power, we could just simulate eternal inflation.23

undisturbed

collision visible

collision large
bubbles within bubbles

triple collision inhospitable

FIG. 17: In the case where homogeneity and isotropy are restored to the future of the post-collision domain wall, we can again
think of the collisions as dividing the original Poincare disc representation of a constant density hypersurface into different
regions. As shown in the left panel, there will be three types of regions to consider: the region undisturbed by the bubble
collision, the banana-shaped boundary region in the neighborhood of the collision where the effects of the interface might be
visible, and the deep interior region to the future of the collision where the interface is not visible. In the red region, subsequent
collisions can occur with bubbles nucleated within bubbles, possibly producing a different boundary and deep interior (green).
This nesting of collisions within collisions will occur until, for example, the cumulative effect of many collisions ruins the
prospects for inflation (black region). Further effects, such as multiple collisions, could also be important for the structure of
various regions.

Consider bubble A and bubble B, which are nucleated

out of the same false vacuum and can collide. The infla-

tionary Hubble scale in bubble A is lower than in bub-

ble B, and therefore when these two bubbles collide, the

post-collision domain wall (in the thin wall limit with an

appropriate tension – see Eq. 25) moves into B. If infla-

tion occurs to the future of the collision inside of bubble

A, then very roughly, for every portion of the reheating

surface removed from B, a portion is gained inside of A.

In the painting approximation, the fraction of volume on

the reheating surface of A to B measured out to some

comoving distance ξ in each bubble goes like 49, which

approaches infinity as you send ξ → ∞. Therefore, in-

cluding the effects of collisions may give strong weight to

bubbles with a low scale of inflation.

Second, it is also quite possible that the overall mea-

sure may strongly impact how we count, and thus that

we expect to be seen by, observers in bubbles. For exam-

ple, several extant measure proposals such as the ‘scale

factor cutoff’ measure [53] would ascribe most weight to

observers at the center of the observation bubble [54] (at

rest with respect to the steady-state frame defined by

the initial value surface). In this case, the edge of the

Poincare disk representation may be largely irrelevant,

and the above discussion could be considerably altered.

VI. OVERALL SUMMARY AND DISCUSSION

Eternal inflation and its accompanying bubble or

pocket universes are in some sense a theoretical byprod-

uct of invoking inflation to explain the boundary condi-

tions for the standard big bang cosmology. This scenario

also arises as a side effect of many theories with extra

dimensions, such as string theory, which generically give

rise to many vacuum solutions. Thus in taking seriously

many theories going beyond the standard model of par-

ticle physics and cosmology, we must also take seriously

the prospect of living in a multiverse, in which thus-far

observed physical properties of our world pertain only

locally. Given the profound reconceptualization of the

Universe that this picture entails, and the very thorny

physical and even philosophical issues the idea raises, it is

important to determine how, even in principle, we might

directly probe such multiverse scenarios experimentally

or observationally. In this review, we have explored one

such possibility: the observation of relics from the colli-

sion between bubble universes. While requiring no small

amount of good fortune, the detection of such a signal

would truly be an epochal discovery.

The research we have reviewed encompasses many pos-

sibilities for the spacetime region affected by a bubble

collision, ranging from essentially empty space inconsis-

tent even with observers’ existence, to regions indistin-

guishable from standard inflationary cosmology. By far

the most interesting scenarios are those in between, in

which observers might see a cosmology that is similar to,

but detectably different from, that described by the cur-

rent standard cosmological model. If those observers are

in some sense generic (relative to observers who see no

effect of the collision), then we have a relatively direct

way of testing any cosmological model giving rise to such

collisions, as well as the exciting possibility of directly

detecting evidence of a multiverse.

How fortunate must we be in order to observe a col-

lision? The arguments and calculations to date indicate

that the following must be true:

1. The inflaton potential must admit bubbles and

their collisions, and at least one type of bubble with

a cosmology in accord with our observations.

Constant time surface in our bubble.

13

FIG. 8: A map between the nucleation point of a bubble and the observed angular scale ψ in the small-bubble approximation.
Here, we consider the limit where HI � HF , Ne � 1, and ξreh ∼ 1 (we choose such an unrealistic value to display the map
more clearly; for a consistent value ξreh ∼ 0.18, the map is compressed). The contours in the false vacuum correspond to an
observed angular scale (from dark to light) of π/2, π, 3π/2.

FIG. 9: A model for the structure of post-collision regions. In the left panel, lines of constant field are superimposed on the
post-collision spacetime. Outside the future light cone of the collision, observers that are comoving with respect to the original
open FLRW foliation follow the solid worldline. Inside the future light cone of the collision, the surfaces of constant field are
disturbed, and comoving observers with respect to this new foliation would follow the dashed worldline. Note that there is a
relative boost between these two foliations at any point. In the right panel, we show two observers: a ‘native born’ observer
associated with structure formed in the undisturbed part of the bubble, and a ‘foreign born’ observer associated with structure
formed in the region of the bubble affected by the collision. These observers both have causal access to both affected and
unaffected portions of the surface of last scattering (dark surface of constant field). Each observer is boosted with respect to
some portion of the surface of last scattering, the distance to which then becomes angle-dependent.

acts as a background modulation on the fluctuations δ(n̂)
in the undisturbed region of the bubble. The results of
this analysis include:

• Centering the collision on θ = 0, because of the az-
imuthal symmetry of the collision, any excess power
is in the m = 0 modes.

• A power asymmetry arises due to the greater ampli-
tude of temperature fluctuations in directions with
a higher background temperature.

• CKL2 found that in their model the fractional

change in redshift increases or decreases roughly
linearly with cos θ, where the direction of the colli-
sion is assumed to be along θ = 0.

• The maximum value of the fractional redshift or
blueshift due to the collision is observationally
bounded by the observed CMB. As a fraction of
the redshift to the undisturbed portion of the re-
heating surface, CKL2 quote a limit on the order
of | rout

rin
− 1| <∼ 10−3.

• In the power spectrum, those Cl with l of order the

• Putting observers in different places, we could then ask what they see.

• Counting various observers, we can also (perhaps) determine the prior.
23
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FIG. 17: In the case where homogeneity and isotropy are restored to the future of the post-collision domain wall, we can again
think of the collisions as dividing the original Poincare disc representation of a constant density hypersurface into different
regions. As shown in the left panel, there will be three types of regions to consider: the region undisturbed by the bubble
collision, the banana-shaped boundary region in the neighborhood of the collision where the effects of the interface might be
visible, and the deep interior region to the future of the collision where the interface is not visible. In the red region, subsequent
collisions can occur with bubbles nucleated within bubbles, possibly producing a different boundary and deep interior (green).
This nesting of collisions within collisions will occur until, for example, the cumulative effect of many collisions ruins the
prospects for inflation (black region). Further effects, such as multiple collisions, could also be important for the structure of
various regions.

Consider bubble A and bubble B, which are nucleated

out of the same false vacuum and can collide. The infla-

tionary Hubble scale in bubble A is lower than in bub-

ble B, and therefore when these two bubbles collide, the

post-collision domain wall (in the thin wall limit with an

appropriate tension – see Eq. 25) moves into B. If infla-

tion occurs to the future of the collision inside of bubble

A, then very roughly, for every portion of the reheating

surface removed from B, a portion is gained inside of A.

In the painting approximation, the fraction of volume on

the reheating surface of A to B measured out to some

comoving distance ξ in each bubble goes like 49, which

approaches infinity as you send ξ → ∞. Therefore, in-

cluding the effects of collisions may give strong weight to

bubbles with a low scale of inflation.

Second, it is also quite possible that the overall mea-

sure may strongly impact how we count, and thus that

we expect to be seen by, observers in bubbles. For exam-

ple, several extant measure proposals such as the ‘scale

factor cutoff’ measure [53] would ascribe most weight to

observers at the center of the observation bubble [54] (at

rest with respect to the steady-state frame defined by

the initial value surface). In this case, the edge of the

Poincare disk representation may be largely irrelevant,

and the above discussion could be considerably altered.

VI. OVERALL SUMMARY AND DISCUSSION

Eternal inflation and its accompanying bubble or

pocket universes are in some sense a theoretical byprod-

uct of invoking inflation to explain the boundary condi-

tions for the standard big bang cosmology. This scenario

also arises as a side effect of many theories with extra

dimensions, such as string theory, which generically give

rise to many vacuum solutions. Thus in taking seriously

many theories going beyond the standard model of par-

ticle physics and cosmology, we must also take seriously

the prospect of living in a multiverse, in which thus-far

observed physical properties of our world pertain only

locally. Given the profound reconceptualization of the

Universe that this picture entails, and the very thorny

physical and even philosophical issues the idea raises, it is

important to determine how, even in principle, we might

directly probe such multiverse scenarios experimentally

or observationally. In this review, we have explored one

such possibility: the observation of relics from the colli-

sion between bubble universes. While requiring no small

amount of good fortune, the detection of such a signal

would truly be an epochal discovery.

The research we have reviewed encompasses many pos-

sibilities for the spacetime region affected by a bubble

collision, ranging from essentially empty space inconsis-

tent even with observers’ existence, to regions indistin-

guishable from standard inflationary cosmology. By far

the most interesting scenarios are those in between, in

which observers might see a cosmology that is similar to,

but detectably different from, that described by the cur-

rent standard cosmological model. If those observers are

in some sense generic (relative to observers who see no

effect of the collision), then we have a relatively direct

way of testing any cosmological model giving rise to such

collisions, as well as the exciting possibility of directly

detecting evidence of a multiverse.

How fortunate must we be in order to observe a col-

lision? The arguments and calculations to date indicate

that the following must be true:

1. The inflaton potential must admit bubbles and

their collisions, and at least one type of bubble with

a cosmology in accord with our observations.

x x
x
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Modeling bubble collisions

• This is impossible.

• It is possibly also wasteful: no one observer can see all this structure.

• To confront data, we also need to determine some useful phenomenological 

parameters to map the fundamental parameters onto.

A first step: 

• Assume the collision is a 

perturbation on top of inflation: 

• Thanks to inflation, any observer 

sees a tiny piece at last scattering:

3

c2!

FIG. 1: A Poincare-disc representation of the surface of last scattering inside of our parent bubble. The future light cone of

the collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last

scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From

the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming in

on the region we have causal access to (inset), the universe will be very close to flat, and the region affected by the collision

will have approximate planar symmetry. The region affected by the collision will appear as a disc of angular scale 2θc on the

CMB sky.

The disturbance caused by a collision will be stretched by the period of inflation inside of the bubble, although on

scales much larger than the horizon, the amplitude of the associated curvature perturbation will be frozen. Given the

enormous release of energy that is possible in a collision, we assume that these initial fluctuations are large, implying

that the wavelength of the disturbance must be larger than the present horizon size. From the approximate planar

symmetry, a reasonable guess for the form of the Newtonian potential due to the collision is a power series in x,

vanishing at some position x0:

Φcoll =
�
v0 + v1(x− x0) + v2(x− x0)

2
+ . . .

�
Θ(x− x0), (5)

where the vi are model-dependent constants. This is related to the observed temperature modulation via the Sachs-

Wolfe effect. There is also a doppler contribution to the temperature modulation due to the fact that the fluid in the

affected region can have a bulk peculiar velocity with respect to the fluid in the unaffected region. Projecting onto

our past light cone, one arrives at a temperature modulation of the form Eq. 4.

This treatment is similar to considering a single super-mode as a possible pre-inflationary relic; the so-called “tilted

universe” scenario [? ? ]. The important distinction in the case of bubble collisions is that the perturbation vanishes

at the causal boundary 1.

It is also possible to go to a gauge where the temperature modulation is derived from the distorted shape of the

surface of last scattering [7, 15]. This is convenient for interpreting the simulations of bubble collisions, where it is

possible to determine how surfaces of constant inflaton field, and thus constant density, are embedded in a specified

background [7]. In Appendix A, we use this picture to derive the temperature modulation caused by a nearly linear

modulation of the surface of last scattering, which is equivalent to the modulation caused by a very long wavelength

perturbation in the Newtonian potential of the form Eq. 5. The modulation function is in this case given by

f(n
µ
) =




4v1

�
1− a(t

(0)
SLS)1/2

�

3tnowH0a(t
(0)
SLS)3/2

(cos θ − cos θc)−
v1

a(t
(0)
SLS)

cos θ



Θ(θc − θ) (6)

where v1 is the (constant) peculiar velocity of the fluid in the region affected by the collision, θc is the angular scale

of the collision, a(t
(0)
SLS) � 1/1090 is the redshift at last scattering in the unperturbed spacetime, tnow is the current

1 Because the collision entered our past light cone only relatively recently, we will still be comoving with respect to the undisturbed FRW
foliation, and the cancellation of the doppler contribution will not occur as it did in the case of a supermode perturbation [? ? ].

Φcoll

c̄i

5

f

0

zcrit

critz

FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (θ = 0).

crit!

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the

collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last

scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From

the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming

in on the region we have causal access to (inset), the universe is very close to flat, and the region affected by the collision has

approximate planar symmetry. The region affected by the collision appears as a disc of angular radius θcrit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the effects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as

Φcoll = Φ(a)
�
c̄0 + c̄1(x− xcrit) +O((x− xcrit)

2)
�
Θ(x− xcrit), (6)

c̄iglobal properties are embedded in the 

observables probe a subset of the 
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Modeling bubble collisions

• Projecting onto the past light cone of an observer:

6

FIG. 3. On the left, we show a bubble collision template with {z0 = 5.0 × 10
−5, zcrit = −5.0 × 10

−5, θcrit = 10.0◦, θ0 =

57.7◦,φ0 = 99.2◦}. On the right we add simulated background fluctuations, smoothing, and instrumental noise.

where Φ(a) encodes the evolution of the potential with scale factor a and the c̄i are model-dependent constants. 1

There are contributions to the observed temperature modulation from the Sachs-Wolfe effect, the integrated Sachs-
Wolfe effect, and a Doppler effect (coming from the induced bulk peculiar velocity �v of the fluid in the region affected
by the collision):

δT

T
� Φcoll(als)

3
+ 2

� 1

als

da
dΦcoll

da
+

�
�v · n̂+O(v2)

�
, (7)

where als is the scale factor at last scattering, a = 1 today, and

�v ∝ ∇Φcoll + a
d

da
∇Φcoll. (8)

To leading order in �v, the temperature induced by the collision is linear in Φcoll and its derivatives. Therefore,
since x = xls cos θ (where xls is the comoving distance out to which we can see on the surface of last scattering), the
temperature fluctuation induced by a collision are generally of the form Eq. 4. Further, even if the Newtonian potential
is continuous across x = xcrit, the resulting temperature fluctuations need not be continuous across the causal boundary
at θcrit. This discontinuity arises from the ISW and Doppler contributions to the observed temperature fluctuation.
Effects that we have neglected, including the finite thickness of the surface of last scattering and uncertainties about
how the perturbations caused by a bubble collision propagate through our bubble interior, are encapsulated by the
higher order terms in Eq. 4. These effects could smear out the causal boundary enclosing the collision on sub-degree
scales. These corrections could be incorporated into our analysis as theoretical understanding improves.

What would a bubble collision embedded in a CMB temperature map look like? In Fig. 3 we show a large-amplitude
collision with and without background CMB fluctuations. In the following sections, we apply the various stages of our
analysis pipeline to this example to illustrate the algorithm. We make extensive use of such simulations in calibrating
our analysis pipeline, and the details of their construction are presented in Sec. IV. Although there could conceivably
be many overlapping collisions, the predicted observational signatures of this scenario have yet to be explored, and
we focus on simulations of distinct individual bubble collisions. Again, as theoretical understanding improves, our
analysis could be extended to include the possibility of overlapping collisions.

What would the detection, or absence, of a bubble collision tell us about the underlying theory of eternal inflation?
To examine what the answer to this question might be, let us make some further assumptions about the temperature
modulations caused by a bubble collision. First, assume that the potential induced by the collision (Eq. 6) is composed
mostly of a single long-wavelength mode of physical wavenumber k. Second, assume that the Sachs-Wolfe effect is
the dominant contribution to the observed temperature modulation. Under these assumptions, the amplitude of an
observed temperature modulation is:

z0 � 2

3

k

H0
Φ(als) (1− cos θcrit) , (9)

1 We are modeling the collision as a collection of super-modes truncated at the causal boundary, and our treatment is therefore very similar
to the so-called “tilted universe” scenario [41, 42]. The important distinction in the case of bubble collisions is that the perturbation
vanishes at the causal boundary xcrit. Because the collision entered our past light cone only relatively recently, we are still comoving
with respect to the undisturbed FRW foliation, and the cancellation of the dipolar temperature modulation seen in Ref. [41–43] does
not occur.

SW ISW doppler

• SW: depends only on the potential at last scattering.

• ISW: depends on how the potential evolves, and how the boundary 

propagates.

• Doppler: depends on where we formed.
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{Φ(a), c̄0, c̄1, xcrit} → {z0, zcrit, θcrit, θ0,φ0}

Modeling bubble collisions

• Projecting onto the past light cone of an observer:

f(n̂) =

�
zcrit − z0 cos θcrit

1− cos θcrit
+

z0 − zcrit
1− cos θcrit

cos θ

�
Θ(θcrit − θ)

5

f

0

zcrit

critz

FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (θ = 0).

crit!

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the

collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last

scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From

the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming

in on the region we have causal access to (inset), the universe is very close to flat, and the region affected by the collision has

approximate planar symmetry. The region affected by the collision appears as a disc of angular radius θcrit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the effects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as

Φcoll = Φ(a)
�
c̄0 + c̄1(x− xcrit) +O((x− xcrit)

2)
�
Θ(x− xcrit), (6)

• This form, with                   , first found by Chang, Kleban, and Levi.zcrit = 0

•                     depends on ISW and doppler contributions: how large?zcrit �= 0

• How is this template altered by the transfer function?
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Model priors

• Previous talks: observable collisions in our PLC are isotropic.
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• Kinematics and observer position affects                   and          .  {z0, zcrit}
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• Toy model tells us:

For all kinematical configurations.
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FIG. 14: The distribution function Eq. D16 normalized by
λH−4

F . We chose the parameters Ne = 70, HF

HI
= 10, θo = 0,

and ξo → ∞ with ξls = .05 shown in red (bottom), ξls = .08
in green (middle), and ξls = 0.1 in blue (top). The maximum

scales like
“

HF

HI

”2

ξls, and as ξls → 0, the shape approaches

sin
`

ψ
2

´

.

those determined by the inflaton potential and other mi-
crophysics – that determines the resulting collision space-
time. The quantity zc is directly related to the (boost)
invariant separation of the nucleation centers of the bub-
bles, which (in the small-bubble approximation) is sim-
ply given by the value of Υ at which the colliding bubble
nucleates. Therefore, in just the same manner as the
derivation of the angular scale distribution, we can find
the distribution in zc by integrating the volume element.

This analysis was performed in AJ, and we refer the
reader there for further details. Changing variables to zc,
and generalizing the treatment in AJ to include only colli-
sions intersecting the observable portion of the surface of
last scattering (this makes little difference for the shape of
the distribution), we show the numerically calculated dis-
tribution function for N = 70, HF

HI
= 10, θo = 0, ξo → ∞,

and ξls = 0.05 in Fig. 16. The distribution peaks around
zc ∼ H−1

F , and falls off quickly at large zc: a quantitative
examination of the distribution (after straightforward al-
gabraic manipulations of the expressions in AJ) shows
that the fall-off at large zc goes like

dN

dzcdφndθn
$ λH−4

F

(

H2
F

H2
I

)

8ξreh

H3
F z3

c
(47)

As a fraction of the height of the maximum, this is
roughly H3

F z3
c .

Thus for typical collisions, values zc ∼ H−1
F should

be assumed when analyzing the effects of collisions. For
example, assessing the strength of the observable effects
of collision debris presented in Sec. IVB 2, only exceed-
ingly rare collisions would be at very large zc where the
strength of effects associated with the collision debris can
become large.

B. Volume fractions

The probability distributions calculated in the previ-
ous section pertain to an observer at a given position
inside the observation bubble, and are essentially deter-
mined by the probability for bubble nucleation and the
details of embedding the bubble inside of the false vac-
uum background. We now take a more ‘global’ viewpoint
and calculate the volume fraction in the future of various
collision events on a surface of constant τ . This could be
taken as a measure, in which the relative frequencies of
different possible observations are given by these volume
fractions (though of course other measures are possible).
In Fig. 17, we show one such surface of constant τ in the
‘poincare disc’ representation of an open FLRW universe
(see, e.g., AJS for metric and embedding of this represen-
tation). The boundary of the disc corresponds to ξ → ∞,
and red discs (colloquially denoted ‘tongues’ in some of
the literature) are drawn to signify the regions affected
by collisions.

A reasonable way to compute overall volume fractions
on a surface of constant τ is to compute them on a ball
of constant ξ, then take the limit ξ → ∞, since the
overall volume is dominated by large ξ. In terms of the
volume fraction affected or unaffected by collisions, one
can do this by directly calculating the solid angle on the
constant-ξ sphere [22, 28] free of collisions. Equivalently,
we can use the fact that the probability for a point on the
sphere not be to the future of a collision is given by [49]

P = e−λV4 (48)

where V4 is the four-volume to the past of a given point,
which at large-ξ is Eq. D4.

The total volume fraction unaffected by collisions is
then

Vun

Vtotal
=

∫

dξ sinh2 ξe
− 4π

3H2
F

H2
I

λξ

∫

dξ sinh2 ξ
∼ e

− 4π

3H2
F

H2
I

λξmax

. (49)

Therefore, even though the volume unaffected by colli-
sions grows without bound as ξmax → ∞, the fraction of
unaffected volume goes to zero.

Nevertheless, the size of a typical ‘pristine’ region in-
side of the bubble can be quite large. We can estimate
the distance in ξ out to which one must go from a pris-
tine point to encounter a collision by calculating the four-
volume to the past of a disc of radius ξ on a surface of
constant τ , excluding the four-volume to the past of the
central point. This calculation was performed by GGV
in the case where HF = HI . If this is not the case, the
four-volume straightforwardly generalizes to

V4 =
4π

H2
F H2

I

ξ, (ξ % 1), (50)

V4 =
4π

3H2
F H2

I

e2ξ, (ξ & 1), (51)
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FIG. 15: The distribution function Eq. D16 for HF

HI
= 1 (left) and HF

HI
= 10 (right) with increasingly large ξls =0.1 (red, solid),

0.5 (green, dot-dashed), and 2 (blue, dashed). For all curves, Ne = 70, θo = 0, and ξo → ∞. We have scaled out the increasing
height of the peak that comes with increasing ξview. The distribution becomes bimodal for small HF

HI
, and obtains a large peak

near ψ ∼ 0 for large HF

HI
.
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FIG. 16: The expected number of collisions with various zc,
the value of z at the collision in the collision frame. Note
that the distribution peaks near zc ∼ H−1

F . The intra-bubble
cosmology is specified by Ne = 70, HF

HI
= 10, and ξls = .05.

The observation angle and position of the observer are set to
θo = 0 and ξo → ∞.

in the limit where Ne > 1. For very small nucleation
rate, the expected distance to the first collision is then

∆ξ ∼ log

(

H2
F H2

I

λ

)

. (52)

This can be many curvature radii, allowing for regions
many times the size of our observable universe to ex-
ist between collisions. However, for λH−4

F ∼ H2
I /H2

F ,
we would expect regions the size of our observable uni-
verse to contain at least one collision, in agreement with
the previous calculations of the expected number of col-
lisions.

A more complex analysis might split the region to the
future of the collision into different categories, for exam-
ple into those regions inside and outside of a post-collision

Ξ

Ψ

FIG. 17: The Poincare disc representation of a constant τ
surface inside of a bubble undergoing collisions. Regions en-
closed by the red ‘tongues’ represent portions of the surface of
constant τ that are to the future of a collision event. To gen-
erate this picture, the sizes and locations of the tongues were
chosen randomly from an angular scale distribution function
such as the one outlined in the previous section. Bubbles
within bubbles and regions with overlapping collisions were
not subtracted here, although they might be in a more accu-
rate treatment.

domain wall. Collisions with bubbles of the same vacua
requires such considerations, since the bubble interiors
merge, and one must define which bubble a given ob-
server is in [28]. Following Dahlen [28], in a collision be-
tween two identical bubbles, we can define the region still
inside the original bubble by going to the collision frame,

For all angles.

• Until our understanding of the model improves, we choose flat priors:
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• The data under consideration: full-sky CMB maps.

The data

• How do we model select?
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Full-sky Bayesian analysis

• Assume collisions can be treated as independent sources on the sky.

• Assume that a theory is specified by the expected number of visible 

collisions on the full sky:1 Statistical formalism
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• The evidence ratio we ultimately want to calculate is:
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• Assume no theoretical prejudice:
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• The actual number of collisions is drawn from a Poisson distribution:
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• From the independence of each collision:
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• The likelihoods are given by:

• In the absence of noise and finite instrumental resolution:
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• Templates are defined as before:
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FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (θ = 0).

crit!

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the

collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last

scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From

the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming

in on the region we have causal access to (inset), the universe is very close to flat, and the region affected by the collision has

approximate planar symmetry. The region affected by the collision appears as a disc of angular radius θcrit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the effects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as
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• Inverting        at full WMAP resolution is impossible.

• We must evaluate the likelihood over a         -dimensional parameter 

space to find              ; this is impossible for              .
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A. Constraints on the theory

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-
sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength
mode at last scattering of physical wavenumber k, as hypothesized above, then the amplitude of the temperature mod-
ulation is

δT
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� 2

3
k

H0
Φcoll (1− cos θc) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the
curvature perturbation due to the collision at the beginning of inflation was very large, and therefore Φcoll ∼ 1.
Further assume that the initial wavelength of the disturbance was of order one inflationary Hubble length. The
current physical size of such a mode is given by

k � Ω1/2
k H0 (10)

The amplitude of the modulation is constrained by observation, which translates into a constraint on the present
density in curvature
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Allowing for some variation in Φ and θc, corresponding to different types of collisions, Ωk can range from the current
observational bound, down to values of order Ωk ∼ 10−12. This corresponds to a window of about 20 efolds of inflation
over which the effects of a collision could be observable. Note that in many cases when a collision could be observable,
the curvature associated with our bubble will be well below the theoretical bound on observation, Ωk < 10−5. Our
bound on curvature is similar to that obtained from the Grishchuk-Zel’dovich effect in an open universe [16, 20].

Given a specific model for the collision, it would in principle be possible to infer the present value of Ωk from the
amplitude of a detected of collision. Since Ωk appears in the formula for the expected number of collisions Eq. 1,
which must be order one in the case of a detection, we would have the relation
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It is possible that the scale of inflation HI could be inferred from the observation of gravitational waves, in which
case we could infer some combination of λ and HF . In the absence of a detection, either N < 1, or Ωk is well below
the bound Eq. 11. However, if we were to observe negative curvature in future experiments, then the absence of a
detection would imply N < 1, translating to the bound
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• Inverting        at full WMAP resolution is impossible.

• We must evaluate the likelihood over a         -dimensional parameter 

space to find              ; this is impossible for              .
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• The compact support for each template means we don’t have to 

do a full-sky analysis, mitigating the above problems! 4

FIG. 2:

proper time, and H0 is the current Hubble constant with H0tnow ∼ 1. The only free parameters are v1 and θc, which

could ultimately be related to the properties and kinematics of a particular collision.

We have neglected a number of potentially important contributions to the temperature profile, including but not

limited to: the redshift of photons crossing into the future light cone of the collision, the finite thickness of the surface

of last scattering, and the effects of the transfer function. However, we expect the features described above to be

fairly generic. The exact form of the temperature profile, the strength of the temperature discontinuity at the causal

boundary, and the importance of effects we have neglected will be somewhat model dependent. We will therefore

consider a set of benchmark models that will include examples of the model Eq. 6, as well as generalizations of the

form Eq. 4.

Following CKL, we will assume that the background gaussian fluctuations produced during slow-roll simply “paint”

the perturbed surface of last scattering. The effect of the bubble collision template is therefore multiplicative, and

the temperature fluctuations including the collision are given by [16]

δT (n̂)

T0
=

T
�
0(1 + f(n̂))(1 + δ(n̂))− T0

T0
, (7)

where T0 is the temperature averaged over the sky, T
�
0 is a constant setting the overall temperature, and δ(n̂) are

the Gaussian temperature anisotropies set up by inflation. For low-redshift-excess collisions (i.e. collisions small in

magnitude or extent), we expect little effect on the average CMB temperature, and so can set T0 ≈ T
�
0, simplifying

the model further to

δT (n̂)

T0
= (1 + f(n̂))(1 + δ(n̂))− 1 (8)

In Fig. ?? we show both the bare template and a simulated map containing an exaggerated bubble collision.

Plots of some representative models.

A. Constraints on the theory

What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?

There are many factors, and so it would be difficult to constrain the value of any one parameter, but here are some

speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-

sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength

mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation

is

δT

T0
� 2

3

k

H0
Φcoll (1− cos θc) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the

curvature perturbation due to the collision at the beginning of inflation was very large, and therefore Φcoll ∼ 1.

I’ll present the strategy.
Hiranya will present its implementation.
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consider a set of benchmark models that will include examples of the model Eq. 6, as well as generalizations of the

form Eq. 4.

Following CKL, we will assume that the background gaussian fluctuations produced during slow-roll simply “paint”

the perturbed surface of last scattering. The effect of the bubble collision template is therefore multiplicative, and

the temperature fluctuations including the collision are given by [16]

δT (n̂)

T0
=

T
�
0(1 + f(n̂))(1 + δ(n̂))− T0

T0
, (7)

where T0 is the temperature averaged over the sky, T
�
0 is a constant setting the overall temperature, and δ(n̂) are

the Gaussian temperature anisotropies set up by inflation. For low-redshift-excess collisions (i.e. collisions small in

magnitude or extent), we expect little effect on the average CMB temperature, and so can set T0 ≈ T
�
0, simplifying

the model further to

δT (n̂)

T0
= (1 + f(n̂))(1 + δ(n̂))− 1 (8)

In Fig. ?? we show both the bare template and a simulated map containing an exaggerated bubble collision.

Plots of some representative models.

A. Constraints on the theory

What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?

There are many factors, and so it would be difficult to constrain the value of any one parameter, but here are some

speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-

sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength

mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation

is

δT

T0
� 2

3

k

H0
Φcoll (1− cos θc) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the

curvature perturbation due to the collision at the beginning of inflation was very large, and therefore Φcoll ∼ 1.
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proper time, and H0 is the current Hubble constant with H0tnow ∼ 1. The only free parameters are v1 and θc, which

could ultimately be related to the properties and kinematics of a particular collision.

We have neglected a number of potentially important contributions to the temperature profile, including but not

limited to: the redshift of photons crossing into the future light cone of the collision, the finite thickness of the surface

of last scattering, and the effects of the transfer function. However, we expect the features described above to be

fairly generic. The exact form of the temperature profile, the strength of the temperature discontinuity at the causal

boundary, and the importance of effects we have neglected will be somewhat model dependent. We will therefore

consider a set of benchmark models that will include examples of the model Eq. 6, as well as generalizations of the

form Eq. 4.

Following CKL, we will assume that the background gaussian fluctuations produced during slow-roll simply “paint”

the perturbed surface of last scattering. The effect of the bubble collision template is therefore multiplicative, and

the temperature fluctuations including the collision are given by [16]

δT (n̂)

T0
=

T
�
0(1 + f(n̂))(1 + δ(n̂))− T0

T0
, (7)

where T0 is the temperature averaged over the sky, T
�
0 is a constant setting the overall temperature, and δ(n̂) are

the Gaussian temperature anisotropies set up by inflation. For low-redshift-excess collisions (i.e. collisions small in

magnitude or extent), we expect little effect on the average CMB temperature, and so can set T0 ≈ T
�
0, simplifying

the model further to

δT (n̂)

T0
= (1 + f(n̂))(1 + δ(n̂))− 1 (8)

In Fig. ?? we show both the bare template and a simulated map containing an exaggerated bubble collision.

Plots of some representative models.

A. Constraints on the theory

What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?

There are many factors, and so it would be difficult to constrain the value of any one parameter, but here are some

speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-

sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength

mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation

is

δT

T0
� 2

3

k

H0
Φcoll (1− cos θc) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the

curvature perturbation due to the collision at the beginning of inflation was very large, and therefore Φcoll ∼ 1.
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limited to: the redshift of photons crossing into the future light cone of the collision, the finite thickness of the surface

of last scattering, and the effects of the transfer function. However, we expect the features described above to be
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boundary, and the importance of effects we have neglected will be somewhat model dependent. We will therefore
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What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?

There are many factors, and so it would be difficult to constrain the value of any one parameter, but here are some

speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-

sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength

mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation

is
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Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the
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where T0 is the temperature averaged over the sky, T
�
0 is a constant setting the overall temperature, and δ(n̂) are

the Gaussian temperature anisotropies set up by inflation. For low-redshift-excess collisions (i.e. collisions small in

magnitude or extent), we expect little effect on the average CMB temperature, and so can set T0 ≈ T
�
0, simplifying

the model further to

δT (n̂)

T0
= (1 + f(n̂))(1 + δ(n̂))− 1 (8)

In Fig. ?? we show both the bare template and a simulated map containing an exaggerated bubble collision.

Plots of some representative models.

A. Constraints on the theory

What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?

There are many factors, and so it would be difficult to constrain the value of any one parameter, but here are some

speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-

sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength

mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation

is

δT

T0
� 2

3

k

H0
Φcoll (1− cos θc) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the

curvature perturbation due to the collision at the beginning of inflation was very large, and therefore Φcoll ∼ 1.

Full-sky Bayesian analysis

• If the blob fully encloses the template, we can approximate:
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2 dT
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Pr(d|0) + Pr(2|N̄s)

Pr(d|2)
Pr(d|0) + . . . (17)

Pr(d|1) =
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�
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2 /2 (19)
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1 Statistical formalism

Pr(N̄s|d) =
Pr(N̄s) Pr(d|N̄s)

Pr(d)
(1)

Pr(d|N̄s) =
∞�

Ns=0

Pr(Ns|N̄s) Pr(d|Ns)

=
∞�

Ns=0

(fskyN̄s)Nse−fskyN̄s

Ns!
Pr(d|Ns, fsky), (2)

Pr(d|Ns) =
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dm1 dm2 . . . dmNs Pr(m1,m2, . . .mNs)Pr(d|Ns,m1,m2, . . .mNs)

Pr(d|Ns,m1,m2, . . .mNs) =
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where
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i j

• Although we only integrate over region 1, the covariance still involves the 

whole sky:
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1 [d1−t1(m)]T/2 (15)

L2(0) =
1

(2π)Npx/2|C2|
e−d2C

−1
2 dT

2 /2 (16)

Pr(N̄s|d)
Pr(0|d) =

Pr(d|N̄s)

Pr(d|0) = Pr(1|N̄s)
Pr(d|1)
Pr(d|0) + Pr(2|N̄s)

Pr(d|2)
Pr(d|0) + . . . (17)

Pr(d|1) =
�

region 1
dmPr(m)Pr(d|1,m) +

�

region 2
dmPr(m)Pr(d|1,m) (18)

Pr(d|1) ∝ e−[d1−t1(m)]C−1
1 [d1−t1(m)]T/2 × e−d2C

−1
2 dT

2 /2 (19)

Pr(d|0) ∝ e−d1C
−1
1 dT

1 /2 × e−d2C
−1
2 dT

2 /2 (20)

Pr(d|1)
Pr(d|0) �

�
region 1 dmPr(m) e−[d1−t1(m)]C−1

1 [d1−t1(m)]T/2

e−d1C
−1
1 dT

1 /2
(21)

2

• Under these approximations, we obtain:
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Full-sky Bayesian analysis

• The               term:   

Pr(d|1)
Pr(d|2) > Vol(m) (27)
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• If we know the likelihood will be small in region 2, the highest likelihood 

occurs when both templates are in region 1.

• But, this is like having one template with twice the parameters! 

Pr(d|1)
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(for flat priors)

• We can approximate the full sum by the              and              terms.

1 Statistical formalism
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Full-sky Bayesian analysis

• For one blob:
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• For two blobs, assuming they are well separated:
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• For         blobs:
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Full-sky Bayesian analysis

• The accuracy of this method relies on how well we can identify candidate 

collisions. However, it is always a lower bound on the evidence ratio!

• This method is a calculational trick: we use the full theory priors so there are 

no a posteriori choices.
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• Need to have both               and sizable       to favor the collision model.  
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• Work in progress trying to quantify the accuracy of our approximations.
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Full-sky Bayesian analysis

• Easily generalized to include other data sets, i.e.polarization:
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• Bayesian methods can be used to rank competing theories of 

spots: i.e. textures.

• Generalizable to study any features in a full-sky data set.
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Conclusions

• Bayesian model selection is a consistent framework for determining if we 

should consider a theory with bubble collisions over one without.

• To do so, it is important to parameterize the theory of bubble collisions, 

and determine the priors for the parameters.

• A full sky Bayesian analysis can be approximated with a patch-wise 

analysis if we know something about the likelihood surface.
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Open questions
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FIG. 4: The two classes of potential studied in AJT. The false vacuum in each case can decay into another high energy vacuum
or to an inflating region of the potential. Potentials of the type shown on the left yield large-field models of inflation, in which
the field rolls over a super-planckian distance. Potentials of the type shown on the right yield small-field models of inflation,
where the field loiters near a critical point of the potential during inflation (this is also referred to as ‘Accidental inflation’ [40].)

FIG. 5: The simulated collision of two identical observation
bubbles generated from a large-field type potential (sketched
in the left panel of Fig. 4). To the future of the collision,
the surfaces of constant-field are well fit by hyperbolas, im-
plying that a boost symmetry of the field configuration is
spontaneously generated. The field remains in the inflation-
ary region of the potential after the collision.

‘bubble.’ The kick experienced by the field is similar to
the dynamics responsible for ending inflation to the fu-
ture of a collision in the small field models studied by
AJT. This calculation is reproduced (in 1+1D) in Fig-
ure 8.

3. Semi-analytic analysis

An alternative study of the behavior of inflation to
the future of a collision was performed in CKL2. The
authors analyzed the behavior of a test-field (meant to
describe the inflaton) in the background geometry of the
thin-wall collision spacetime. The test-field was fixed to
be constant along the post-collision domain wall, and to
evolve along the open-slicing surfaces of constant τ out-
side of the future light cone of the collision. The field
is matched across a null wall following this lightcone,

and this forces the surfaces of constant field to be ei-
ther advanced or retarded from those outside the region
influenced by the collision, depending on the underlying
potential landscape. This leads to a slightly different
number of e-folds of inflation in different regions of the
bubble. In this calculation, where spacetime expansion
is taken into account, it can again be confirmed (see AJ)
that infinite spacelike surfaces of homogeneity develop to
the future of the collision at sufficiently late times. We
therefore expect that the habitable volume to the future
of at least some types of collisions can be infinite.

4. Future directions

Currently, numerical analyses of bubble collisions re-
veal a number of important qualitative results (e.g. that
observers can exist to the future of at least some col-
lision types), but do not provide a detailed quantitative
foundation upon which to base conclusions about the ob-
servability of ‘detectable’ or ‘falsifiable’ collisions. Some
promising extensions for future work include:

• Simulations including gravitational effects, in
which the metric describing the bubble interior af-
ter a collision could be solved for precisely. Using
such a model, it is plausible that one could make
quantitative predictions for the deviations from ho-
mogeneity and isotropy in the future of a collision.

• Multi-field potentials. Depending on the assumed
couplings, it is possible that colliding bubbles do
not even interact.

• Including interaction with radiation and other
fields. Again, depending on the assumed under-
lying theory, colliding bubbles might produce a va-
riety of debris, and interact in different ways.

• What is the mapping from a potential to a phenomenological model for 

the effects of collisions on the CMB?
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f

0

zcrit

critz

FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (θ = 0).

crit!

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the

collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last

scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From

the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming

in on the region we have causal access to (inset), the universe is very close to flat, and the region affected by the collision has

approximate planar symmetry. The region affected by the collision appears as a disc of angular radius θcrit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the effects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as
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• Are there any correlations between LCDM parameters and collisions?
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• What happens in a vast landscape?

• Bayesian methods inherit the measure problem.

• Question becomes academic, since the data will probably never be 

good enough to distinguish models in detail.
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