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Inspiration

Why is the universe 3 dimensional?

What is the overall shape and structure of the universe?
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Inspiration

Why is the universe 3 dimensional?

What is the overall shape and structure of the universe?

How will we know?

Do we have a landscape of vacua, extra dimensions?

Does this explain properties of our universe (e.g. the Cosmological Constant)?

Did we have a period of eternal inflation in our past?

Is our universe a vast, inhomogeneous multiverse?
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Outline

1. Motivation

2. The Anisotropic Universe

3. Observables
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Lower Dimensions

Even SM has a “landscape” of lower dimensional vacua

More ways to compactify more dimensions

Arkani-Hamed et. al. (2008)

Lower dimensional vacua seem generic

Possibly all dimensions began compact?

Dimensions tend to decompactify

We assume our universe came from a lower dimensional vacuum

Brandenberger & Vafa (1989)

Giddings & Myers (2004)
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Lower Dimensions

Even SM has a “landscape” of lower dimensional vacua

More ways to compactify more dimensions

Arkani-Hamed et. al. (2008)

Lower dimensional vacua seem generic

Possibly all dimensions began compact?

Dimensions tend to decompactify

We assume our universe came from a lower dimensional vacuum

Brandenberger & Vafa (1989)

We will look for residual signs of this special direction

Creates large initial anisotropy, diluted by slow-roll inflation

Giddings & Myers (2004)
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Landscape Signals
For signals to be observable, inflation must not have lasted too long.

Many landscape signals require this

e.g. curvature, bubble collisions Aguirre, Johnson & Shomer (2007),  Chang, Kleban & Levi (2007)

Inflation needs tuning. Few e-folds may be generic. 
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Landscape Signals
For signals to be observable, inflation must not have lasted too long.

Many landscape signals require this

e.g. curvature, bubble collisions Aguirre, Johnson & Shomer (2007),  Chang, Kleban & Levi (2007)

These also assume other vacua 
are 3+1 dimensional

These signals could reveal our 
history of decompactification

What if we relax this assumption?

Inflation needs tuning. Few e-folds may be generic. 

(see also Blanco-Pillado and Salem, 2010)
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The Anisotropic Universe
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Initial Transition
If the parent vacuum is 2+1 dimensional

Coleman - De Luccia tunneling creates a bubble of 3+1 dimensional space

Could be radion tunneling (or change in fluxes, etc.)
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Initial Transition
If the parent vacuum is 2+1 dimensional

Coleman - De Luccia tunneling creates a bubble of 3+1 dimensional space

Could be radion tunneling (or change in fluxes, etc.)

spatial dimensions = R2 × S1

x

y

x

z
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Initial Transition
If the parent vacuum is 2+1 dimensional

Coleman - De Luccia tunneling creates a bubble of 3+1 dimensional space

Could be radion tunneling (or change in fluxes, etc.)

spatial dimensions = R2 × S1

x

y

x

z

creates an infinite, open FRW 
universe, in 2 dimensions

negative curvature only in 2 dimensions, third dimension flat

x

t
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Initial Transition

Alternatively, if the parent vacuum is 1+1 dimensional:

The single uncompactified dimension is flat

Other two may be any compact 2-manifold with geometry S2, E2, or H2

Generic compactifications have large curvature
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Initial Transition

Alternatively, if the parent vacuum is 1+1 dimensional:

The single uncompactified dimension is flat

Other two may be any compact 2-manifold with geometry S2, E2, or H2

Generic compactifications have large curvature

We won’t consider the 0+1 dimensional case.

In general, expect anisotropic curvature after transition

Saturday, April 2, 2011



After the Transition

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

We assume after the transition:

k = ±1
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After the Transition

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

We assume after the transition:

k = ±1
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“FRW” equations:
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ḃ

b
= −8πGpr

2
ä
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“FRW” equations:

z-dimension is flat ⇒ 

anisotropic curvature
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ä

a
+
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+
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“FRW” equations:

anisotropic pressure

z-dimension is flat ⇒ 

anisotropic curvature
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After the Transition

ds2 = dt2 − a(t)2
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ḃ

b
= −8πGpr
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a
+

ȧ2

a2
+
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a2
= −8πGpz

“FRW” equations:

normal FRW eqn

anisotropic pressure

z-dimension is flat ⇒ 

anisotropic curvature

Saturday, April 2, 2011



After the Transition

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

We assume after the transition:

k = ±1

ȧ2

a2
+ 2

ȧ

a

ḃ
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+
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a2
= 8πGρ

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
= −8πGpr

2
ä

a
+

ȧ2

a2
+

k

a2
= −8πGpz

“FRW” equations:

normal FRW eqn

anisotropic pressure

anisotropic curvature ⇒ anisotropic expansion: Ha ≡
ȧ

a
�= Hb ≡

ḃ

b

z-dimension is flat ⇒ 

anisotropic curvature
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Curvature Dominance

Assume immediately after the tunneling ḃ ≈ 0

a(t) ∼ t
�
1 +O

�
G Λ t2

��

b(t) ∼ b0

�
1 +O

�
G Λ t2

��

Hb ≈ 0so b(t) is frozen

but is largeHa

x

t

inflation
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Curvature Dominance

Assume immediately after the tunneling ḃ ≈ 0

a(t) ∼ t
�
1 +O

�
G Λ t2

��

b(t) ∼ b0

�
1 +O

�
G Λ t2

��

Hb ≈ 0so b(t) is frozen

but is largeHa

a(t) will expand, diluting curvature until t2 ∼ G Λ Ωk < ΩΛwhen

slow-roll inflation takes over and drives all dimensions to expand Hb → Ha

x

t

inflation
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2Ḣa + 3H
2
a +

k

a2
= −8πGpznormal FRW eqn:

our universe is approximately isotropic: ∆H ≡ Ha −Hb � H Ωk � 1and

Evolution of the Anisotropic Universe
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d

dt
∆H + 3Ha ∆H +

k

a2
= 8πG (pr − pz) ≈ 0

2Ḣa + 3H
2
a +

k

a2
= −8πGpznormal FRW eqn:

our universe is approximately isotropic: ∆H ≡ Ha −Hb � H Ωk � 1and

Evolution of the Anisotropic Universe

Saturday, April 2, 2011



d

dt
∆H + 3Ha ∆H +

k

a2
= 8πG (pr − pz) ≈ 0

2Ḣa + 3H
2
a +

k

a2
= −8πGpznormal FRW eqn:

our universe is approximately isotropic: ∆H ≡ Ha −Hb � H Ωk � 1and

thermal equilibrium ⇒ isotropic pressure

and during MD pressure is small enough

Evolution of the Anisotropic Universe

∆p

p
∼ ∆H

H
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d

dt
∆H + 3Ha ∆H +

k

a2
= 8πG (pr − pz) ≈ 0

2Ḣa + 3H
2
a +

k

a2
= −8πGpznormal FRW eqn:

our universe is approximately isotropic: ∆H ≡ Ha −Hb � H Ωk � 1and

thermal equilibrium ⇒ isotropic pressure

and during MD pressure is small enough

2Ḣb + 3H
2
b −

k

a2
= −8πGpeqn for b(t):

a(t) expands normally, b(t) expands as if curvature was opposite sign

Evolution of the Anisotropic Universe

∆p

p
∼ ∆H

H
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Return of Curvature
d

dt
∆H + 3Ha ∆H +

k

a2
= 0

Inflation ∆H

Ha
= −Ωk

RD ∆H

Ha
= −1

3
Ωk

MD ∆H

Ha
= −2

5
Ωk

inhomogeneous solutions are:

homogeneous solutions sourced at every transition but die off quickly

Ωk =
k

a2H2
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Return of Curvature
d

dt
∆H + 3Ha ∆H +

k

a2
= 0

Inflation ∆H

Ha
= −Ωk

RD ∆H

Ha
= −1

3
Ωk

MD ∆H

Ha
= −2

5
Ωk

inhomogeneous solutions are:

homogeneous solutions sourced at every transition but die off quickly

~ e-120  after inflation

~ 1  in curvature dominance

~ 10-2  today

~ 10-5  at recombination

Ωk =
k

a2H2
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Return of Curvature
d

dt
∆H + 3Ha ∆H +

k

a2
= 0

Inflation ∆H

Ha
= −Ωk

RD ∆H

Ha
= −1

3
Ωk

MD ∆H

Ha
= −2

5
Ωk

inhomogeneous solutions are:

homogeneous solutions sourced at every transition but die off quickly

we need the full 
solutions during MD:

a(t) ∝ t
2
3

�
1− Ωk

5

�

b(t) ∝ t
2
3

�
1 +

Ωk

5

�

~ e-120  after inflation

~ 1  in curvature dominance

~ 10-2  today

~ 10-5  at recombination

Ωk =
k

a2H2
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Observables
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Measuring Curvature
Sound horizon at recombination provides a “standard ruler”
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Measuring Curvature
Sound horizon at recombination provides a “standard ruler”

Curvature is measured by observing angular size of ruler ~ 1°  a 
high-l observable
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Measuring Curvature
Sound horizon at recombination provides a “standard ruler”

What does anisotropic curvature look like?

Curvature is measured by observing angular size of ruler ~ 1°  a 
high-l observable
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r

z

0

Standard Rulers

universe roughly flat before recombination ⇒ rulers are fixed physical length ds 

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2
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r

z

0

Standard Rulers

universe roughly flat before recombination ⇒ rulers are fixed physical length ds 

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

Δθ
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r

z

0

Standard Rulers

universe roughly flat before recombination ⇒ rulers are fixed physical length ds 

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

Δθ

transform to locally flat frame 
⇒ observable angle is

tan (θ) =
�

a (t)
b (t)

dr

dz

�
+O

�
1 m

28 Gpc

�
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r

z

0

Standard Rulers

universe roughly flat before recombination ⇒ rulers are fixed physical length ds 

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

transform to locally flat frame 
⇒ observable angle is

tan (θ) =
�

a (t)
b (t)

dr

dz

�
+O

�
1 m

28 Gpc

�

∆θ

�
1 +

3
5
Ωk

�

∆θ

�
1− 1

5
Ωk

�

∆θ

�
1 +

1
5
Ωk

�

Should be easier to measure than isotropic curvature
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Effect of Geometric Warp
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Effect of Geometric Warp

Saturday, April 2, 2011



Effect of Geometric Warp
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r

z

0

P

CMB Flux
CMB Flux today =

Φ0 =
dN0

dΩ0dA0dt0dE0

Saturday, April 2, 2011



r

z

0

P

CMB Flux

Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Late time effect acts on all multipoles

Φ0 =
dN0

dΩ0dA0dt0dE0
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CMB Flux

Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Late time effect acts on all multipoles

Φ0 (E0, θ0) = ΦP (EP , θP )
�

dΩP

dΩ0

� �
dAP dtP
dA0dt0

� �
dEP

dE0

�

Φ0 =
dN0

dΩ0dA0dt0dE0
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CMB Flux

Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

∝ a2b

CMB Flux today =

Late time effect acts on all multipoles

Φ0 (E0, θ0) = ΦP (EP , θP )
�

dΩP

dΩ0

� �
dAP dtP
dA0dt0

� �
dEP

dE0

�

Φ0 =
dN0

dΩ0dA0dt0dE0
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Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

Late time effect acts on all multipoles

Φ0 (E0, θ0) = ΦP (EP , θP )
�

dΩP
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� �
dAP dtP
dA0dt0

� �
dEP

dE0

�

Φ0 =
dN0

dΩ0dA0dt0dE0
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Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

#1

Late time effect acts on all multipoles
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Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

#1 #2

Late time effect acts on all multipoles

Φ0 (E0, θ0) = ΦP (EP , θP )
�

dΩP

dΩ0

� �
dAP dtP
dA0dt0

� �
dEP

dE0

�

Φ0 =
dN0

dΩ0dA0dt0dE0
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CMB Flux

Anisotropic Curvature:
1.  Non-sphericity of LSS
2.  Bending of photon path
3.  Angle dependent redshift

CMB Flux today =

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

#1 #2 #3

Late time effect acts on all multipoles

Φ0 (E0, θ0) = ΦP (EP , θP )
�

dΩP

dΩ0

� �
dAP dtP
dA0dt0

� �
dEP

dE0

�

Φ0 =
dN0

dΩ0dA0dt0dE0
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The Quadrupole

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

T = T +
�

lm

almYlm
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The Quadrupole

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

T = T +
�

lm

almYlm only redshift affects the monopole
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The Quadrupole

Φ0 (E0, θ0) =
E2

0

exp
�

E0
TLSS(θ0+δθ) (1 + Ωk0Y20 (θ0))

�
− 1

T = T +
�

lm

almYlm only redshift affects the monopole

tuning ⇒ likely range ~ 10−4 � Ωk0 � 10−5 ~ cosmic variance

low-l multipoles have high cosmic variance

Francis & Peacock (2009),  WMAP7 (2010)

local ISW effect may raise quadrupole

contribution to CMB quadrupole anisotropy: a20 ≈ −
8
15

�
π

5
Ωk0T
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statistical isotropy ⇒
except

alm = size of temperature fluctuation in Ylm mode

�al1m1
a∗l2m2

� = 0

�alm a∗lm� ∼ Cl

Angular Correlations
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statistical isotropy ⇒
except

alm = size of temperature fluctuation in Ylm mode
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a∗l2m2

� = 0

�alm a∗lm� ∼ Cl

anisotropic 
curvature

(1 + Ωk0 #lm)

�alm a∗l−2,m� ∼ Ωk0 (Cl−2 #lm + Cl #lm)

Angular Correlations

Saturday, April 2, 2011



statistical isotropy ⇒
except

alm = size of temperature fluctuation in Ylm mode

�al1m1
a∗l2m2

� = 0

�alm a∗lm� ∼ Cl

a good measure of anisotropy:

= 0  for isotropicALM
ll� =

�

mm�

�alm a∗l�m�� (−1)m�
CLM

l,m,l�,−m�

anisotropic 
curvature

(1 + Ωk0 #lm)

�alm a∗l−2,m� ∼ Ωk0 (Cl−2 #lm + Cl #lm)

Angular Correlations
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statistical isotropy ⇒
except

alm = size of temperature fluctuation in Ylm mode

�al1m1
a∗l2m2

� = 0

�alm a∗lm� ∼ Cl

a good measure of anisotropy:

= 0  for isotropicALM
ll� =

�

mm�

�alm a∗l�m�� (−1)m�
CLM

l,m,l�,−m�

anisotropic 
curvature

(1 + Ωk0 #lm)

�alm a∗l−2,m� ∼ Ωk0 (Cl−2 #lm + Cl #lm)

Angular Correlations

A20
ll ∼ Ωk0 Cl

√
l

A20
l,l−2 ∼ Ωk0 (l (Cl − Cl−2) + Cl)

√
l

anisotropic curvature gives:

These are our high-l observables - low cosmic variance
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WMAP Anomaly

possibly due to instrumental systematics

WMAP sees only two nonzero: A20
ll A20

l,l−2and

Planck should improve measurement

More precision than isotropic curvature,
no degeneracy with scale factor expansion history
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Is it just another anisotropy?
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Is it just another anisotropy?
Symmetries of Bubble Nucleation => Specific initial geometry

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2
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Power in just one linearly independent harmonic e.g. Y20
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Is it just another anisotropy?
Symmetries of Bubble Nucleation => Specific initial geometry

ds2 = dt2 − a(t)2
�

dr2

1− kr2
+ r2dφ2

�
− b(t)2dz2

Power in just one linearly independent harmonic e.g. Y20

Expect power in all harmonics for generic anisotropy.

Symmetries valid in thin wall regime. 
Thick wall?
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Signals of Compact Topology
Eternal inflation seems to imply space is infinite

But we’re led to finite, compact topology in at least one dimension
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Signals of Compact Topology
Eternal inflation seems to imply space is infinite

But we’re led to finite, compact topology in at least one dimension

Cornish, Spergel & Starkman (1996)Observe matched circles in the sky

current limit = 24 Gpc     may get to ~ 28 Gpc diameter of our universe
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Signals of Compact Topology
Eternal inflation seems to imply space is infinite

But we’re led to finite, compact topology in at least one dimension

Cornish, Spergel & Starkman (1996)Observe matched circles in the sky

current limit = 24 Gpc     may get to ~ 28 Gpc diameter of our universe

2+1 dimensional parent: curvature and topology are in different directions
1+1 dimensional: same directions

Saturday, April 2, 2011



Other Measurements
CMB is a snapshot - only 2 dimensional information

3D info can directly distinguish anisotropy from inhomogeneity

21 cm and galaxy surveys

21 cm can observe curvature to Ωk ~ 10-4
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21 cm and galaxy surveys

21 cm can observe curvature to Ωk ~ 10-4

Quadrupole from anisotropy generates correlated E-mode 
polarization. 

Saturday, April 2, 2011



Other Measurements
CMB is a snapshot - only 2 dimensional information

3D info can directly distinguish anisotropy from inhomogeneity

21 cm and galaxy surveys

21 cm can observe curvature to Ωk ~ 10-4

Visible directly in Hubble measurements

Current limits ~ few %

May improve to < 10-2  with e.g. GW sirens

Anisotropic curvature also causes differential Hubble expansion ∆H ∼ Ωk H

Schutz (2001)

Quadrupole from anisotropy generates correlated E-mode 
polarization. 
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Conclusions + Future Directions

• Have high-l, low cosmic variance, observables of dimension changing transitions

• Due to late time effect of anisotropic curvature

• Not statistical predictions, though provide evidence for landscape/eternal inflation

• Can test an observation of curvature for isotropy

• Anisotropy implies lower dimensional parent vacuum

• Isotropy is evidence for 3+1 dimensional parent vacuum

• Interesting to explore dimension changing transitions

• Other observables, e.g. bubble collisions, gravitational waves?

• Does the landscape provide a reason for 3+1 dimensions?
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