Observing the Dimensionality of Our Parent Vacuum

Surjeet Rajendran, Johns Hopkins

with

Peter Graham and
Roni Harnik

Inspiration

Why is the universe 3 dimensional?

What is the overall shape and structure of the universe?

Inspiration

Why is the universe 3 dimensional?

What is the overall shape and structure of the universe?

Do we have a landscape of vacua, extra dimensions?
Does this explain properties of our universe (e.g. the Cosmological Constant)?

Did we have a period of eternal inflation in our past?

Is our universe a vast, inhomogeneous multiverse?

Inspiration

Why is the universe 3 dimensional?

What is the overall shape and structure of the universe?

Do we have a landscape of vacua, extra dimensions?
Does this explain properties of our universe (e.g. the Cosmological Constant)?

Did we have a period of eternal inflation in our past?
Is our universe a vast, inhomogeneous multiverse?

How will we know?

Outline

I. Motivation
2. The Anisotropic Universe
3. Observables

Lower Dimensions

Lower dimensional vacua seem generic
Even SM has a "landscape" of lower dimensional vacua
Arkani-Hamed et. al. (2008)
More ways to compactify more dimensions

We assume our universe came from a lower dimensional vacuum

Possibly all dimensions began compact?
Dimensions tend to decompactify

Brandenberger \& Vafa (I989)
Giddings \& Myers (2004)

Lower Dimensions

Lower dimensional vacua seem generic
Even SM has a "landscape" of lower dimensional vacua
Arkani-Hamed et. al. (2008)
More ways to compactify more dimensions

We assume our universe came from a lower dimensional vacuum

Possibly all dimensions began compact?
Dimensions tend to decompactify

Brandenberger \& Vafa (1989)
Giddings \& Myers (2004)

Creates large initial anisotropy, diluted by slow-roll inflation

We will look for residual signs of this special direction

Landscape Signals

For signals to be observable, inflation must not have lasted too long.
Inflation needs tuning. Few e-folds may be generic.

Many landscape signals require this
e.g. curvature, bubble collisions

Aguirre, Johnson \& Shomer (2007), Chang, Kleban \& Levi (2007)

Landscape Signals

For signals to be observable, inflation must not have lasted too long.
Inflation needs tuning. Few e-folds may be generic.

> Many landscape signals require this
e.g. curvature, bubble collisions

Aguirre, Johnson \& Shomer (2007), Chang, Kleban \& Levi (2007)

These also assume other vacua are 3+I dimensional

What if we relax this assumption?

These signals could reveal our history of decompactification (see also Blanco-Pillado and Salem, 2010)

The Anisotropic Universe

Initial Transition

If the parent vacuum is $2+1$ dimensional
Coleman - De Luccia tunneling creates a bubble of 3+I dimensional space
Could be radion tunneling (or change in fluxes, etc.)

Initial Transition

If the parent vacuum is $2+1$ dimensional
Coleman - De Luccia tunneling creates a bubble of 3+I dimensional space
Could be radion tunneling (or change in fluxes, etc.)
spatial dimensions $=\mathbf{R}^{2} \times S^{\prime}$

Initial Transition

If the parent vacuum is $2+1$ dimensional
Coleman - De Luccia tunneling creates a bubble of 3+| dimensional space
Could be radion tunneling (or change in fluxes, etc.)
spatial dimensions $=\mathbf{R}^{2} \times S^{\prime}$

creates an infinite, open FRW universe, in 2 dimensions
negative curvature only in 2 dimensions, third dimension flat

Initial Transition

Alternatively, if the parent vacuum is $\mathrm{I}+\mathrm{I}$ dimensional:

The single uncompactified dimension is flat

Other two may be any compact 2-manifold with geometry $\mathrm{S}^{2}, \mathrm{E}^{2}$, or H^{2}

Generic compactifications have large curvature

Initial Transition

Alternatively, if the parent vacuum is $I+\mid$ dimensional:

The single uncompactified dimension is flat

Other two may be any compact 2-manifold with geometry $\mathrm{S}^{2}, \mathrm{E}^{2}$, or H^{2}

Generic compactifications have large curvature

We won't consider the $0+\mathrm{I}$ dimensional case.

In general, expect anisotropic curvature after transition

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

"FRW" equations:

$$
\begin{aligned}
\frac{\dot{a}^{2}}{a^{2}}+2 \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{k}{a^{2}} & =8 \pi G \rho \\
\frac{\ddot{a}}{a}+\frac{\ddot{b}}{b}+\frac{\dot{a}}{a} \frac{\dot{b}}{b} & =-8 \pi G p_{r} \\
2 \frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}} & =-8 \pi G p_{z}
\end{aligned}
$$

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

"FRW" equations:

$$
\begin{array}{rr}
\left.\frac{\dot{a}^{2}}{a^{2}}+2 \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{\kappa}{a^{2}}\right) & =8 \pi G \rho \\
\frac{\ddot{a}}{a}+\frac{\ddot{b}}{b}+\frac{\dot{a}}{a} \bar{b} & =-8 \pi G p_{r} \\
2 & \text { z-dimension is flat } \Rightarrow \\
2 & \text { anisotropic curvature }
\end{array}
$$

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

"FRW" equations:

$$
\begin{aligned}
\frac{\dot{a}^{2}}{a^{2}}+2 \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{k}{a^{2}} & =8 \pi G \rho & \text { z-dimension is flat } \Rightarrow \\
\frac{\ddot{a}}{a}+\frac{\ddot{b}}{b}+\frac{\dot{a}}{a} \frac{\dot{b}}{b} & =-8 \pi G p_{r} & \text { anisotropic curvature } \\
2 \frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}} & =-8 \pi G p_{z} & \text { anisotropic pressure }
\end{aligned}
$$

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

"FRW" equations:

$$
\begin{aligned}
\frac{\dot{a}^{2}}{a^{2}}+2 \frac{\dot{a}}{a} \frac{b}{b}+\frac{k}{a^{2}} & =8 \pi G \rho & & \text { anisotropic curvat } \\
\frac{\ddot{a}}{a}+\frac{\ddot{b}}{b}+\frac{\dot{a}}{a} \frac{\dot{b}}{b} & =-8 \pi G p_{r} & & \text { anisotropic pressu } \\
2 \frac{a}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}} & =-8 \pi G p_{z} & & \text { normal FRW eqn }
\end{aligned}
$$

After the Transition

We assume after the transition:

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2} \quad \mathrm{k}= \pm \mathrm{l}
$$

"FRW" equations:

$$
\begin{aligned}
\frac{\dot{a}^{2}}{a^{2}}+2 \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{k}{a^{2}} & =8 \pi G \rho & & \text { z-dimension is flat } \Rightarrow \\
\frac{\ddot{a}}{a}+\frac{\ddot{b}}{b}+\frac{\dot{a}}{a} \frac{\dot{b}}{b} & =-8 \pi G p_{r} & & \text { anisotropic curvature } \\
2 \frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}} & =-8 \pi G p_{z} & & \text { normal FRW eqn }
\end{aligned}
$$

anisotropic curvature \Rightarrow anisotropic expansion: $\quad H_{a} \equiv \frac{\dot{a}}{a} \neq H_{b} \equiv \frac{\dot{b}}{b}$

Curvature Dominance

Assume immediately after the tunneling $\quad \dot{b} \approx 0$

$$
\begin{aligned}
& a(t) \sim t\left(1+\mathcal{O}\left(G \Lambda t^{2}\right)\right) \\
& b(t) \sim b_{0}\left(1+\mathcal{O}\left(G \Lambda t^{2}\right)\right)
\end{aligned}
$$

$$
\text { so } \mathrm{b}(\mathrm{t}) \text { is frozen } H_{b} \approx 0
$$

but H_{a} is large

Curvature Dominance

Assume immediately after the tunneling $\quad \dot{b} \approx 0$

$$
\begin{aligned}
& a(t) \sim t\left(1+\mathcal{O}\left(G \Lambda t^{2}\right)\right) \\
& b(t) \sim b_{0}\left(1+\mathcal{O}\left(G \Lambda t^{2}\right)\right)
\end{aligned}
$$

so $\mathrm{b}(\mathrm{t})$ is frozen $H_{b} \approx 0$
but H_{a} is large
$\mathrm{a}(\mathrm{t})$ will expand, diluting curvature until $t^{2} \sim G \Lambda$ when $\Omega_{k}<\Omega_{\Lambda}$
slow-roll inflation takes over and drives all dimensions to expand $\quad H_{b} \rightarrow H_{a}$

Evolution of the Anisotropic Universe

$$
\text { normal FRW eqn: } \quad 2 \dot{H}_{a}+3 H_{a}^{2}+\frac{k}{a^{2}}=-8 \pi G p_{z}
$$

our universe is approximately isotropic: $\Delta H \equiv H_{a}-H_{b} \ll H$ and $\Omega_{k} \ll 1$

Evolution of the Anisotropic Universe

$$
\text { normal FRW eqn: } \quad 2 \dot{H}_{a}+3 H_{a}^{2}+\frac{k}{a^{2}}=-8 \pi G p_{z}
$$

our universe is approximately isotropic: $\Delta H \equiv H_{a}-H_{b} \ll H$ and $\Omega_{k} \ll 1$

$$
\frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=8 \pi G\left(p_{r}-p_{z}\right)
$$

Evolution of the Anisotropic Universe

$$
\text { normal FRW eqn: } \quad 2 \dot{H}_{a}+3 H_{a}^{2}+\frac{k}{a^{2}}=-8 \pi G p_{z}
$$

our universe is approximately isotropic: $\Delta H \equiv H_{a}-H_{b} \ll H$ and $\quad \Omega_{k} \ll 1$

$$
\frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=8 \pi G\left(p_{r}-p_{z}\right) \approx 0
$$

> thermal equilibrium \Rightarrow isotropic pressure
> and during MD pressure is small enough $\frac{\Delta p}{p} \sim \frac{\Delta H}{H}$

Evolution of the Anisotropic Universe

$$
\text { normal FRW eqn: } \quad 2 \dot{H}_{a}+3 H_{a}^{2}+\frac{k}{a^{2}}=-8 \pi G p_{z}
$$

our universe is approximately isotropic: $\Delta H \equiv H_{a}-H_{b} \ll H$ and $\Omega_{k} \ll 1$

$$
\begin{aligned}
& \frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=8 \pi G\left(p_{r}-p_{z}\right) \approx 0 \\
& \quad \begin{array}{l}
\text { thermal equilibrium } \Rightarrow \text { isotropic pressure } \\
\text { and during MD pressure is small enough }
\end{array} \frac{\Delta p}{p} \sim \frac{\Delta H}{H}
\end{aligned}
$$

$$
\text { eqn for } \mathrm{b}(\mathrm{t}): 2 \dot{H}_{b}+3 H_{b}^{2}-\frac{k}{a^{2}}=-8 \pi G p
$$

$\mathrm{a}(\mathrm{t})$ expands normally, $\mathrm{b}(\mathrm{t})$ expands as if curvature was opposite sign

Return of Curvature

$$
\frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=0 \quad \Omega_{k}=\frac{k}{a^{2} H^{2}}
$$

inhomogeneous solutions are:
Inflation

$$
\frac{\Delta H}{H_{a}}=-\Omega_{k}
$$

RD
$\frac{\Delta H}{H_{a}}=-\frac{1}{3} \Omega_{k}$
MD

$$
\frac{\Delta H}{H_{a}}=-\frac{2}{5} \Omega_{k}
$$

homogeneous solutions sourced at every transition but die off quickly

Return of Curvature

$$
\frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=0 \quad \Omega_{k}=\frac{k}{a^{2} H^{2}}
$$

inhomogeneous solutions are:
\sim I in curvature dominance
Inflation

$$
\frac{\Delta H}{H_{a}}=-\Omega_{k}
$$

RD
$\frac{\Delta H}{H_{a}}=-\frac{1}{3} \Omega_{k}$
$\sim \mathrm{e}^{-120}$ after inflation
$\sim 10^{-5}$ at recombination
MD

$$
\frac{\Delta H}{H_{a}}=-\frac{2}{5} \Omega_{k}
$$

$$
\sim 10^{-2} \text { today }
$$

homogeneous solutions sourced at every transition but die off quickly

Return of Curvature

$$
\frac{d}{d t} \Delta H+3 H_{a} \Delta H+\frac{k}{a^{2}}=0 \quad \Omega_{k}=\frac{k}{a^{2} H^{2}}
$$

inhomogeneous solutions are:
~ | in curvature dominance
Inflation

$$
\frac{\Delta H}{H_{a}}=-\Omega_{k}
$$

$\sim \mathrm{e}^{-120}$ after inflation
$\sim 10^{-5}$ at recombination
MD
$\frac{\Delta H}{H_{a}}=-\frac{1}{3} \Omega_{k}$
$\frac{\Delta H}{H_{a}}=-\frac{2}{5} \Omega_{k}$
$\sim 10^{-2}$ today
homogeneous solutions sourced at every transition but die off quickly
we need the full solutions during MD:

$$
\begin{aligned}
& a(t) \propto t^{\frac{2}{3}}\left(1-\frac{\Omega_{k}}{5}\right) \\
& b(t) \propto t^{\frac{2}{3}}\left(1+\frac{\Omega_{k}}{5}\right)
\end{aligned}
$$

Observables

Measuring Curvature

Sound horizon at recombination provides a "standard ruler"

Measuring Curvature

Sound horizon at recombination provides a "standard ruler"
Curvature is measured by observing angular size of ruler $\sim 1^{\circ}$ a
high-I observable

Measuring Curvature

Sound horizon at recombination provides a "standard ruler"
Curvature is measured by observing angular size of ruler $\sim 1^{\circ}$ a
high-l observable

What does anisotropic curvature look like?

Standard Rulers

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

universe roughly flat before recombination \Rightarrow rulers are fixed physical length $d s$

Standard Rulers

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

universe roughly flat before recombination \Rightarrow rulers are fixed physical length $d s$

Standard Rulers

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

universe roughly flat before recombination \Rightarrow rulers are fixed physical length $d s$

Standard Rulers

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

universe roughly flat before recombination \Rightarrow rulers are fixed physical length $d s$

transform to locally flat frame
\Rightarrow observable angle is

$$
\tan (\theta)=\left(\frac{a(t)}{b(t)} \frac{d r}{d z}\right)+\mathcal{O}\left(\frac{1 \mathrm{~m}}{28 \mathrm{Gpc}}\right)
$$

Standard Rulers

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

universe roughly flat before recombination \Rightarrow rulers are fixed physical length $d s$

transform to locally flat frame
\Rightarrow observable angle is

$$
\tan (\theta)=\left(\frac{a(t)}{b(t)} \frac{d r}{d z}\right)+\mathcal{O}\left(\frac{1 \mathrm{~m}}{28 \mathrm{Gpc}}\right)
$$

Should be easier to measure than isotropic curvature

Effect of Geometric Warp

Effect of Geometric Warp

Effect of Geometric Warp

CMB Flux

CMB Flux today $=$ $\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}$

CMB Flux

CMB Flux today $=$

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\Phi_{0}\left(E_{0}, \theta_{0}\right)=\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right)
$$

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\begin{array}{r}
\Phi_{0}\left(E_{0}, \theta_{0}\right)=\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right) \\
\propto a^{2} b
\end{array}
$$

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\begin{aligned}
\Phi_{0}\left(E_{0}, \theta_{0}\right) & =\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right) \\
\Phi_{0}\left(E_{0}, \theta_{0}\right) & =\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1}
\end{aligned}
$$

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\begin{aligned}
\Phi_{0}\left(E_{0}, \theta_{0}\right) & =\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right) \\
\Phi_{0}\left(E_{0}, \theta_{0}\right) & \left.=\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{\left(T_{\mathrm{LSS}}\right)\left(\theta_{0}+\delta \theta\right)}\right.}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1
\end{aligned}
$$

CMB Flux

CMB Flux today =

$$
\Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\begin{aligned}
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right) \\
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1} \\
& \# \downarrow \quad \# 2
\end{aligned}
$$

CMB Flux

$$
\begin{aligned}
& \text { CMB Flux today }= \\
& \qquad \Phi_{0}=\frac{d N_{0}}{d \Omega_{0} d A_{0} d t_{0} d E_{0}}
\end{aligned}
$$

Anisotropic Curvature:
I. Non-sphericity of LSS
2. Bending of photon path
3. Angle dependent redshift

Late time effect acts on all multipoles

$$
\begin{aligned}
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\Phi_{P}\left(E_{P}, \theta_{P}\right)\left(\frac{d \Omega_{P}}{d \Omega_{0}}\right)\left(\frac{d A_{P} d t_{P}}{d A_{0} d t_{0}}\right)\left(\frac{d E_{P}}{d E_{0}}\right) \\
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\frac{E_{0}^{2}}{\exp (\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}(1+\underbrace{}_{k_{0} Y_{20}(\theta D)})-1} \\
& \# \mathrm{ZI} \quad \# 2
\end{aligned}
$$

The Quadrupole

$$
\begin{aligned}
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1} \\
& T=\bar{T}+\sum_{l m} a_{l m} Y_{l m}
\end{aligned}
$$

The Quadrupole

$$
\begin{aligned}
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1} \\
& T=\bar{T} \sum_{l m} a_{l m} Y_{l m} \text { only redshift affects the monopole }
\end{aligned}
$$

The Quadrupole

$$
\begin{aligned}
& \Phi_{0}\left(E_{0}, \theta_{0}\right)=\frac{E_{0}^{2}}{\exp \left(\frac{E_{0}}{T_{\mathrm{LSS}}\left(\theta_{0}+\delta \theta\right)}\left(1+\Omega_{k_{0}} Y_{20}\left(\theta_{0}\right)\right)\right)-1} \\
& T=\bar{T} \sum_{l m} a_{l m} Y_{l m} \text { only redshift affects the monopole }
\end{aligned}
$$

contribution to CMB quadrupole anisotropy: $a_{20} \approx-\frac{8}{15} \sqrt{\frac{\pi}{5}} \Omega_{k_{0}} \bar{T}$
tuning \Rightarrow likely range $\sim 10^{-4} \gtrsim \Omega_{k_{0}} \gtrsim 10^{-5} \sim$ cosmic variance
low-I multipoles have high cosmic variance
local ISW effect may raise quadrupole
Francis \& Peacock (2009), WMAP7 (2010)

Angular Correlations

$a_{l m}=$ size of temperature fluctuation in $Y_{l m}$ mode
statistical isotropy $\Rightarrow\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}}^{*}\right\rangle=0$

$$
\text { except } \quad\left\langle a_{l m} a_{l m}^{*}\right\rangle \sim C_{l}
$$

Angular Correlations

$a_{l m}=$ size of temperature fluctuation in $Y_{l m}$ mode
$\begin{array}{rlrl}\text { statistical isotropy } \Rightarrow\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}}^{*}\right\rangle & =0 & \text { anisotropic } \\ \text { except } & \left\langle a_{l m} a_{l m}^{*}\right\rangle & \sim C_{l}\left(1+\Omega_{k_{0}} \#_{l m}\right) \\ \left\langle a_{l m} a_{l-2, m}^{*}\right\rangle & \sim \Omega_{k_{0}}\left(C_{l-2} \#_{l m}+C_{l} \#{ }_{l m}\right)\end{array}$

Angular Correlations

$$
a_{l m}=\text { size of temperature fluctuation in } Y_{l m} \text { mode }
$$

statistical isotropy $\Rightarrow\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}}^{*}\right\rangle=0$
anisotropic

$$
\text { except } \begin{aligned}
\left\langle a_{l m} a_{l m}^{*}\right\rangle & \sim C_{l}\left(1+\Omega_{k_{0}} \#_{l m}\right) \\
\left\langle a_{l m} a_{l-2, m}^{*}\right\rangle & \sim \Omega_{k_{0}}\left(C_{l-2} \#_{l m}+C_{l} \#{ }_{l m}\right)
\end{aligned}
$$

a good measure of anisotropy:

$$
A_{l l^{\prime}}^{L M}=\sum_{m m^{\prime}}\left\langle a_{l m} a_{l^{\prime} m^{\prime}}^{*}\right\rangle(-1)^{m^{\prime}} \mathcal{C}_{l, m, l^{\prime},-m^{\prime}}^{L M}=0 \text { for isotropic }
$$

Angular Correlations

$$
a_{l m}=\text { size of temperature fluctuation in } Y_{l m} \text { mode }
$$

statistical isotropy $\Rightarrow\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}}^{*}\right\rangle=0$
anisotropic

$$
\text { except } \begin{aligned}
\left\langle a_{l m} a_{l m}^{*}\right\rangle & \sim C_{l}\left(1+\Omega_{k_{0}} \#_{l m}\right) \\
\left\langle a_{l m} a_{l-2, m}^{*}\right\rangle & \sim \Omega_{k_{0}}\left(C_{l-2} \#_{l m}+C_{l} \#_{l m}\right)
\end{aligned}
$$

a good measure of anisotropy:

$$
A_{l l^{\prime}}^{L M}=\sum_{m m^{\prime}}\left\langle a_{l m} a_{l^{\prime} m^{\prime}}^{*}\right\rangle(-1)^{m^{\prime}} \mathcal{C}_{l, m, l^{\prime},-m^{\prime}}^{L M}=0 \text { for isotropic }
$$

anisotropic curvature gives:

$$
\begin{aligned}
A_{l l}^{20} & \sim \Omega_{k_{0}} C_{l} \sqrt{l} \\
A_{l, l-2}^{20} & \sim \Omega_{k_{0}}\left(l\left(C_{l}-C_{l-2}\right)+C_{l}\right) \sqrt{l}
\end{aligned}
$$

These are our high-l observables - low cosmic variance

WMAP Anomaly

WMAP sees only two nonzero: $A_{l l}^{20}$ and $A_{l, l-2}^{20}$
More precision than isotropic curvature, no degeneracy with scale factor expansion history

possibly due to instrumental systematics
Planck should improve measurement

Is it just another anisotropy?

Is it just another anisotropy?

Symmetries of Bubble Nucleation => Specific initial geometry

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

Is it just another anisotropy?

Symmetries of Bubble Nucleation => Specific initial geometry

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

Power in just one linearly independent harmonic e.g. Y_{20}

Is it just another anisotropy?

Symmetries of Bubble Nucleation => Specific initial geometry

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

Power in just one linearly independent harmonic e.g. Y_{20}
Expect power in all harmonics for generic anisotropy.

Is it just another anisotropy?

Symmetries of Bubble Nucleation => Specific initial geometry

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \phi^{2}\right)-b(t)^{2} d z^{2}
$$

Power in just one linearly independent harmonic e.g. Y_{20}
Expect power in all harmonics for generic anisotropy.
Symmetries valid in thin wall regime. Thick wall?

Signals of Compact Topology

Eternal inflation seems to imply space is infinite
But we're led to finite, compact topology in at least one dimension

Signals of Compact Topology

Eternal inflation seems to imply space is infinite
But we're led to finite, compact topology in at least one dimension

Observe matched circles in the sky
Cornish, Spergel \& Starkman (1996)
current limit $=24 \mathrm{Gpc} \quad$ may get to $\sim 28 \mathrm{Gpc}$ diameter of our universe

Signals of Compact Topology

Eternal inflation seems to imply space is infinite
But we're led to finite, compact topology in at least one dimension

Observe matched circles in the sky Cornish, Spergel \& Starkman (1996)
current limit $=24$ Gpc may get to ~ 28 Gpc diameter of our universe
$2+\mid$ dimensional parent: curvature and topology are in different directions I+| dimensional: same directions

Other Measurements

CMB is a snapshot - only 2 dimensional information

3D info can directly distinguish anisotropy from inhomogeneity
21 cm and galaxy surveys
2 I cm can observe curvature to $\Omega_{\mathrm{k}} \sim 10^{-4}$

Other Measurements

CMB is a snapshot - only 2 dimensional information

3D info can directly distinguish anisotropy from inhomogeneity
21 cm and galaxy surveys
21 cm can observe curvature to $\Omega_{\mathrm{k}} \sim 10^{-4}$

Quadrupole from anisotropy generates correlated E-mode polarization.

Other Measurements

CMB is a snapshot - only 2 dimensional information

3D info can directly distinguish anisotropy from inhomogeneity
21 cm and galaxy surveys
21 cm can observe curvature to $\Omega_{\mathrm{k}} \sim 10^{-4}$

Quadrupole from anisotropy generates correlated E-mode polarization.

Anisotropic curvature also causes differential Hubble expansion $\Delta H \sim \Omega_{k} H$
Visible directly in Hubble measurements
Current limits ~ few \%
May improve to $<10^{-2}$ with e.g. GW sirens

Conclusions + Future Directions

- Have high-l, low cosmic variance, observables of dimension changing transitions
- Due to late time effect of anisotropic curvature
- Not statistical predictions, though provide evidence for landscape/eternal inflation
- Can test an observation of curvature for isotropy
- Anisotropy implies lower dimensional parent vacuum
- Isotropy is evidence for $3+$ I dimensional parent vacuum
- Interesting to explore dimension changing transitions
- Other observables, e.g. bubble collisions, gravitational waves?
- Does the landscape provide a reason for $3+1$ dimensions?

