The Irreducible Axion Background

Kevin Langhoff - UC Berkeley Nadav Outmezguine (UCB) and Nick Rodd (CERN) [2208.07882]

- Strong CP
- Dark matter candidate
- Potential mediator to dark sector
- Prevalent in string theories.
- Goldstone bosons of global symmetries

Today's Definition of Axions

 $\mathcal{L} \supset \frac{1}{2} (\partial_{\mu}a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aee}}{2m_e} (\partial_{\mu}a) \bar{e} \gamma^{\mu} \gamma_5 e$

Axion Parameter Space

If it solves strong CP (Canonically)

Axion Parameter Space

If it exists

Axion Parameter Space If it is all of DM

Axion Parameter Space If it is all of DM

Axion Parameter Space What if it is not <u>ALL</u> of DM?

Axion Parameter Space What if it is not <u>ALL</u> of DM?

Irreducible Axion Background (Freeze-in relics)

Irreducible Cosmic Abundance & Constraints

The General Picture

Dark matter may consist of more than one species.

 $\rho_{\chi} \approx F_{\chi} \rho_{\rm DM} e^{-t/\tau_{\chi}}$ (For non-relativistic χ after freeze-in)

Constraints on Sub-component DM

Many constraints on DM can immediately be modified to constraints on χ . •

For example (for $\tau_{\chi} \gg t_{\rm U}$):

+
$$\sigma_{DM-N} \to F_{\chi} \times \sigma_{\chi-N}$$

+
$$\Gamma_{DM \to \gamma\gamma} \to F_{\chi} \times \Gamma_{\chi \to \gamma\gamma}$$

•
$$\langle \sigma_{DM+DM\to SM} v \rangle \to F_{\chi}^2 \times \langle \sigma_{\chi+\chi\to SM} v \rangle$$

• Current indirect detection experiments for decay can probe down to $F_{\gamma} \sim 10^{-12}$!

Constraints on Sub-component DM

- DM Approach : $F_{\gamma} = 1$ and $\tau_{\gamma} \gg t_{\rm U}$.
- Agnostic Approach : F_{γ} is an additional free parameter.
- Calculational Approach : $F_{\chi} = F_{\chi}(m_{\chi}, g_{\chi}, C)$, where C is some cosmology.

Constraints depending on *C* are not **robust**.

Broadly speaking searches for a dark particle χ constrain the parameters $(m_{\gamma}, g_{\gamma}, F_{\gamma})$.

Irreducible Cosmic Abundance Constraints

Instead we calculate the **irreducible** abundance $F_{\gamma,irr}(m_{\gamma}, g_{\gamma})$.

This is determined by considering only production after the beginning of BBN (T < 5 MeV).

Constraints obtained using $F_{\chi,irr}(m_{\chi},g_{\chi})$ are **robust** under two mild assumptions:

- 1. χ does not decay/annihilate to a dark sector.
- Standard cosmology holds from BBN on. 2.

- Sub-componets are well motivated and interesting in their own right.
- DM searches can also constrain subcomponents.
- There exists an irreducible abundance which can be used to obtain robust constraints.

Summary

Application to Axions

Irreducible Axion Background Constraints

- Calculate $F_{a,irr}$ 1.
- 2. Apply astrophysical and cosmological constraints.

Production of Axions

- The irreducible axion background is obtained by freezing-in axions beginning at T = 5 MeV.
- What does freezing-in mean?
- Definition: Freeze-in is the process where particles are created from the primordial plasma of the universe without ever being in a state of thermal equilibrium with it.

Types of Freeze-In (Rough Idea)

 $t_{\rm RH}$

There exist many types of freeze-in, but can generally be classified into two groups.

UV Freeze-In

IR Freeze-In

 $\rightarrow t$

Logic of Freeze-In (Simplified)

 $\frac{dn_a}{dt} + 3Hn_a = n_{\rm SM}\Gamma_{\rm SM\to a} - n_a\Gamma_{a\to \rm SM} \approx 0$

Define: $Y_a = n_a/s \sim n_a R^{-3}$

 $\frac{dY_a}{d\log T} \sim -\frac{\Gamma_{\rm SM} \rightarrow a}{H} =$

Axion Production

$$\implies Y_{a,\mathrm{FI}} \sim \frac{\Gamma_{\mathrm{SM}\to a}}{H}\Big|_{T_*}$$

UV Freeze-In Example

IR Freeze-In Example

 $\sum a \Gamma \sim g_{a\gamma\gamma}^2 T^3$ (Naively)

IR Freeze-In Example

 $T_{\rm RH}$

T

General Production of Axions

Photon Conversion

Inverse Decay

Fermion Annihilation

Astrophysical and Cosmological Constraints

• Consider the benchmark constraint $\tau_{\rm DM} > 10^{28} \text{s} \implies \tau_a > F_a \tau_{\rm DM}$.

Intuition: X-rays

• Consider the benchmark constraint $\tau_{\rm DM} > 10^{28} \text{s} \implies \tau_a > F_a \tau_{\rm DM}$.

Intuition: X-rays

- Consider the benchmark constraint $\tau_{\rm DM} > 10^{28} \text{s} \implies \tau_a > F_a \tau_{\rm DM}$.
- To observe decays today we require $\tau_a \gtrsim 0.1 \times t_{\rm U}$.

Intuition: X-rays

- Consider the benchmark constraint $\tau_{\rm DM} > 10^{28} \text{s} \implies \tau_a > F_a \tau_{\rm DM}$.
- To observe decays today we require $\tau_a \gtrsim 0.1 \times t_{\rm U}$.

Intuition: X-rays

How we observe the decay of axions depends on when they decay.

How we observe the decay of axions depends on when they decay.

For $\tau_a \gtrsim t_U$, we can look for decays in local sources of axions:

- Galactic Center
- Dwarf Spheroidal Galaxies

 $\frac{d\Phi}{dE}$

$$\frac{b}{E} = \frac{D}{2\pi m_a \tau_a} \delta(E - m_a/2)$$

 $t_{\rm CMB}$

X-rays

How we observe the decay of axions depends on when they decay.

 $\frac{d\Phi}{dE} = \frac{2\rho_a}{m_a E H_0} \frac{e^{-t(E)/\tau_a}}{\tau_{a \to \gamma\gamma}} \frac{1}{\sqrt{\Omega}}$

For $t_{\rm CMB} \ll \tau_a \lesssim t_{\rm U}$, we can look for decays in the diffuse axion background. [Zurek et al, 2013]

$$\frac{e^{-\kappa(z,E)}}{\Omega_m(m_a/2E)^3 + \Omega_\Lambda} \Theta(m_a - 2E)$$

How we observe the decay of axions depends on when they decay.

For $t_{\text{CMB}} \lesssim \tau_a$, we can look for the effect of decays on CMB anisotropies ($z \lesssim 1100$)

How we observe the decay of axions depends on when they decay.

For $\tau_a \lesssim t_{\rm CMB}$, we can look for the effect of decays on CMB spectral distortions $(1100 \le z \le 2 \times 10^6)$ [Balzas et al, 2022]

How we observe the decay of axions depends on when they decay.

For $t_{\text{BBN}} \lesssim \tau_a$, we can look for the effect of decays light element abundance

How we observe the decay of axions depends on when they decay.

 $t_{\rm BBN} \lesssim \tau_a \lesssim t_{\rm CMB}$, we can look for the effect of decays in $\Delta N_{\rm eff}$.

Photophilic Axion Bounds

Photophilic Axion Bounds

Generalizations

Photophobic Axion Constraints

Photophobic Axion Constraints

Photophilic Axions with Misalignment

Production of Sterile Neutrinos

• For simplicity, assume sterile neutrino mixes only with ν_e .

$$\begin{pmatrix} \nu_e \\ \nu_s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• The Boltzmann equation will have the following form:

$$\left(\frac{\partial}{\partial t} - Hp\frac{\partial}{\partial p}\right)f_s(T,p) = (f_s^{\text{eq}})$$

$$\Gamma_s(T,p) \approx \begin{cases} \frac{1}{4} \sin^2(2\theta) d_e G_F^2 E T^4, & m_s \ll T_{\rm RH} \\ \frac{1}{\tau_s} \left[\frac{m_s}{E} + \frac{288\zeta(3)T^3}{m_s^3} + \frac{112\pi^4 T^3}{3m_s^5} \left(E T + \frac{p^2 T}{3E} \right) \right], & m_s \gg T_{\rm RH} \end{cases}$$

$$(-f_s)\Gamma_s(T,p)$$

[G. Gelmini, E. Osoba, S. Palomares-Ruiz, S. Pascoli, 2008]

The easiest way to observe sterile neutrinos is through their radiative decay.

However, their lifetime is determined by a different process

(Also to e^+e^- when $m_s > 2m_e$)

[Diagrams from Kopp and Dasgupta, 2021]

Sterile Neutrino Constraints

Thank You

Upcoming work:

- Axiverse with SU(N) SYM Domain Walls
- PBH Production with SUSY Axions
- Observing Light BSM Particles with Muon Decay
- Axion Dark Matter in the Mirror World

A Domain Walls JSY Axions articles with Muon Decay e Mirror World

Photophilic Axions with $T_{RH} = 100 \text{ MeV}$

Axions with "Universal" Couplings

Production of Axions

• Abundance obtained from solving the Boltzmann equation.

-/

Production of Axions

Make the following definitions:

1.
$$x = m_a/T$$

2.
$$Y_a = n_a/s$$

3.
$$\tilde{g}(x) = 1 - \frac{1}{3} \frac{d \log g_{\star,s}}{d \log x}$$

The Boltzmann equation simplifies to

$$\frac{dY_a}{dx} = \frac{\tilde{g}(x)}{xH(x)s(x)}R(x) \Longrightarrow \mathcal{F}_a \simeq \frac{m_a s_0}{\rho_{\mathrm{DM},0}}Y_a(\infty) \qquad \text{(Ignoring Axion Decay)}$$

Production of Axions (Inverse Decay)

- $R_{\text{ID}}(T) = 0$ for $2m_{\gamma}(T) > m_a$ where $m_{\gamma}(T) \approx eT/3 \sim T/10$
- Similar calculation for electrons.

$$m_a^2(m_a^2 - 4m_\gamma^2)$$

$$f_a^{\text{eq}} \left(\beta p_a + 2T \ln \left[\frac{1 - e^{-E_+/T}}{1 - e^{-E_-/T}} \right] \right)$$

Production of Axions $(2 \rightarrow 2)$

$$R_{2\to2}(T) \approx \frac{g_1 g_2 T}{32\pi^4} \int_{s_{\min}}^{\infty} ds \,\lambda(s, m_1^2, m_2^2) \frac{K_1(\sqrt{s}/T)}{\sqrt{s}} \sigma_{12\to3a}(s) \quad \text{[D'Eramo et al, 2017]}$$

$$\sigma_{\rm FA}(s) = \frac{\alpha g_{a\gamma\gamma}^2}{24\beta} \left(1 - \frac{m_a^2}{s}\right)^3 \left(1 + \frac{2m_e^2}{s}\right) + \frac{\alpha g_{aee}^2}{2s^2 \left(s - m_a^2\right)\beta^2} \left[\left(s^2 - 4m_e^2 m_a^2 + m_a^4\right) \ln\left(\frac{1 + \beta}{1 - \beta}\right) - 2\beta m_a^2 s \right] \\ - \frac{\alpha g_{a\gamma\gamma} g_{aee} m_e}{2s\beta^2} \left(1 - \frac{m_a^2}{s}\right)^2 \ln\left(\frac{1 + \beta}{1 - \beta}\right)$$

$$\begin{split} \sigma_{\rm PC}(s) = & \frac{\alpha g_{a\gamma\gamma}^2}{32s^2} \left[2(2s^2 - 2m_a^2 s + m_a^4) \ln\left(\frac{s - m_a^2}{m_\gamma^2}\right) - 7s^2 + 10m_a^2 s - 5m_a^4 \right] \\ & + \frac{\alpha g_{aee}^2}{8s^3} \left[2\left(2s^2 - 2m_a^2 s + m_a^4\right) \ln\left(\frac{s}{m_e^2}\right) - 3s^2 + 10m_a^2 s - 7m_a^4 \right] \\ & - \frac{\alpha g_{a\gamma\gamma} g_{aee} m_e}{8s^3(s - m_a^2 + m_e^2)} \left[2(s^3 + m_a^6) \ln\left(\frac{(s - m_a^2)^2}{(s + m_a^2)m_e^2}\right) - 3(s + m_a^2)(s - m_a^2)^2 \right] \end{split}$$

61

Irreducible Cosmic Abundance Constraints

How do you calculate $F_{\chi,irr}(m_{\chi}, g_{\chi})$?

- Generally found by setting $n_{\chi}(T = 5 \text{ MeV}) = 0$ and having χ freeze-in.
- Roughly equivalent to having reheating occur at $T_{\rm RH} = 5$ MeV.
- Generally $F_{\chi,irr}(m_{\chi},g_{\chi}) \approx 0$ for $m_{\chi} \gg 100$ MeV because of Boltzmann suppression.

Evidence of dark matter

Bullet Cluster

Structure Formation

Model independent facts about dark matter

- It exists.
- It is not hot.
- Rough idea of DM halo density.
- Mass dependent constraints on self interactions.
- No known consistent explanation within SM.
- Thats about it...

ensity. hts on self interactions. lanation within SM.

My talk will focus on <u>sub-components</u> of DM, not DM itself. More flexible mass ranges.

