Electroweak Constraints on Effective Theories

Zhenyu Han

UC Davis
hep-ph/0412166, 0506206, 0510125

Nov. 13, 2006

Outline

- The hierarchy problem in the standard model and TeV scale new physics
- Electroweak constraints on TeV scale physics
- Effective theory analysis of electroweak data
- Applications to TeV scale models
- Conclusion

The hierarchy problem of the standard model
$\left.\begin{array}{c}\text { Planck scale: } M_{P l} \sim 10^{19} \mathrm{GeV} \\ \text { EWSB scale: } v=246 \mathrm{GeV}\end{array}\right\} \Longrightarrow$ Huge gap in between.

- EWSB scale unstable - radiative corrections to the Higgs mass.

$$
M_{h}^{2}=M_{h}^{2}(\text { tree })+\text { radiative corrections }
$$

- One loop quadratically divergent corrections to the Higgs mass:

$$
\begin{array}{rc}
\text { top loop: } & -\frac{3}{8 \pi^{2}} \lambda_{t}^{2} \Lambda^{2} \\
S U(2) \text { gauge boson loop: } & \frac{9}{64 \pi^{2}} g^{2} \Lambda^{2} \\
\text { Higgs loop: } & \frac{1}{16 \pi^{2}} \lambda^{2} \Lambda^{2}
\end{array}
$$

Λ : cutoff; λ_{t} : top Yukawa coupling; λ : Higgs quartic coupling

TeV scale new physics

- Fine-tuning less than $10 \% \Longrightarrow \Lambda \lesssim \mathcal{O}(1) \mathrm{TeV}$:

$$
\frac{3}{8 \pi^{2}} \lambda_{t}^{2} \Lambda^{2}<10 \times(200 \mathrm{GeV})^{2} \Longrightarrow \Lambda \lesssim 3 \mathrm{TeV}
$$

- Cutoff $\sim \mathrm{TeV} \Longrightarrow \mathrm{TeV}$ scale extensions of the SM.

SUSY, technicolor, extra-dimensions, little Higgs, ...

- Predict heavy particles \rightarrow awaiting direct probe at Tevatron, LHC, (ILC),
- Indirect information from electroweak precision tests (EWPTs).

Electroweak precision tests

- Established the SM of electroweak physics.
- Good precision: 1% level or better.
- Include observables from:
- Atomic parity violation experiments;
- Deep inelastic scattering: neutrino-nucleon, neutrino-electron scattering;
$-e^{+} e^{-} \rightarrow \bar{f} f, e^{+} e^{-} \rightarrow W^{+} W^{-}$scattering;
- W boson mass;
- An example: Z^{\prime} gauge boson.
- Affect $e^{+} e^{-} \rightarrow \bar{f} f$ scattering:

- No significant deviation from the SM prediction.
\Longrightarrow Constraints on Z^{\prime} mass or Z^{\prime}-fermion couplings.

Model independent analysis

- Generally, no significant deviations from the $\mathrm{SM} \Longrightarrow$ Constraints reduce the number of models, allow us to focus on more promising ones.
- Model-independent method
- Global constraints - using all relevant data.
- Avoid repeating the calculations.
- Example: oblique parameters S, T, U, \ldots
\rightarrow Not enough, non-oblique corrections are common. (e.x. Z^{\prime}).
\rightarrow Model-dependent corrections to observables calculated from time to time in the literature.

	Standard Notation	Measurement
Atomic parity	$Q_{W}(C s)$	Weak charge in Cs
violation	$Q_{W}(T l)$	Weak charge in Tl
DIS	g_{L}^{2}, g_{R}^{2}	ν_{μ}-nucleon scattering from NuTeV
	R^{ν}	ν_{μ}-nucleon scattering from CDHS and CHARM
	κ	ν_{μ}-nucleon scattering from CCFR
	$g_{V}^{\nu e}, g_{A}^{\nu e}$	$\nu-e$ scattering from CHARM II
Z-pole	Γ_{Z}	Total Z width
	σ_{h}^{0}	$e^{+} e^{-}$hadronic cross section at Z pole
	$R_{f}^{0}(f=e, \mu, \tau, b, c)$	Ratios of decay rates
	$A_{F B}^{0, f}(f=e, \mu, \tau, b, c)$	Forward-backward asymmetries
	$\sin ^{2} \theta_{e f f}^{l e p t}\left(Q_{F B}\right)$	Hadronic charge asymmetry
	$A_{f}(f=e, \mu, \tau, b, c)$	Polarized asymmetries
Fermion pair	$\sigma_{f}(f=q, \mu, \tau)$	Total cross sections for $e^{+} e^{-} \rightarrow f \bar{f}$
production at	$A_{F B}^{f}(f=\mu, \tau)$	Forward-backward asymmetries for $e^{+} e^{-} \rightarrow f \bar{f}$
LEP2	$d \sigma_{e} / d \cos \theta$	Differential cross section for $e^{+} e^{-} \rightarrow e^{+} e^{-}$
W pair	$d \sigma_{W} / d \cos \theta$	Differential cross section for $e^{+} e^{-} \rightarrow W^{+} W^{-}$
	M_{W}	W mass

Table 1: Relevant measurements

The effective theory approach

- Below the cutoff Λ, after integrating out the heavy particles:

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i} O_{i}+\frac{1}{\Lambda^{4}}(\ldots)+\ldots
$$

- Only the SM fields appear in the operators O_{i}.
- The operators O_{i} conserve the SM gauge symmetry. \Longrightarrow The number of O_{i} is finite to a given order in Λ.
- The coefficients c_{i} record the effects of the heavy particles. If taken arbitrary \rightarrow model-independent analysis.

Procedure

- Identify relevant operators,add them to the SM Lagrangian

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum_{i} a_{i} O_{i}
$$

- Calculate deviations to observables from the SM predictions, assuming arbitrary a_{i}.
- Compare with data, obtain constraints on a_{i}.
- For a given model, translate constraints on a_{i} to constraints on model parameters (mass, coupling...).

Reduce the number of operators

- Given the current experimental precision, enough to focus on dimension-6 operators, since higher order operators are suppressed by more powers of Λ^{2}.
- Keep only independent operators
- Equations of motion
- Integration by part
- Keep operators that are relevant to TeV scales: imposing symmetries on the operators. "over-constrained"
- Remove operators not tightly constrained by EWPTs. "poorly constrained"

Symmetries of the operators

Remove "over-constrained" operators by imposing symmetries:

- Baryon and lepton number conservation.
- CP invariance.
- flavor conservation, $U(3)^{5}$ symmetry.

Flavor symmetry

- Avoid operators like $\frac{1}{\Lambda^{2}} \bar{s} d \bar{s} d, \quad \Lambda>1000 \mathrm{TeV}$.
- $U(1)$ symmetry for each flavor? $\frac{1}{\Lambda^{2}}\left(c_{1} \bar{d} d \bar{d} d+c_{2} \bar{s} s \bar{s} s+c_{3} \bar{b} b \bar{b} b\right)$? In what basis?
- Simpler solution-flavor universality, $U(3)^{5}$ symmetry.
- One $U(3)$ for each SM fermion representation: q, l, u, d, e. $q, l:$ left-handed doublets; $u, d, e:$ right handed singlet.
- Omit flavor indices. ($\left.\bar{q}_{i} q_{i} \bar{u}_{j} u_{j} \rightarrow \bar{q} q \bar{u} u\right)$.
- Processes involving the third generation are not constrained as well \rightarrow flavor symmetry relaxed to $[U(2) \times U(1)]^{5}$ later.

Remove operators not tightly constrained

- Remove not or "poorly" constrained operators.

Example:

- Not constrained

$$
\partial_{\mu}\left(h^{\dagger} h\right) \partial^{\mu}\left(h^{\dagger} h\right)
$$

- Poorly constrained

$$
\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{q} \gamma_{\mu} q\right)
$$

- 21 operators are left.
- Operators modifying gauge boson propagators:

$$
O_{W B}=\left(h^{\dagger} \sigma^{a} h\right) W_{\mu \nu}^{a} B^{\mu \nu}, \quad O_{h}=\left|h^{\dagger} D_{\mu} h\right|^{2}
$$

These two operators correspond respectively to the S and T parameters.

- Four-fermion operators:

$$
\begin{array}{ll}
O_{l l}^{s}=\frac{1}{2}\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{l} \gamma_{\mu} l\right), \quad O_{l l}^{t}=\frac{1}{2}\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{l} \gamma_{\mu} \sigma^{a} l\right), \\
O_{l q}^{s}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{q} \gamma_{\mu} q\right), \quad O_{l q}^{t}=\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{q} \gamma_{\mu} \sigma^{a} q\right), \\
O_{l e}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{q e}=\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{e} \gamma_{\mu} e\right), \\
O_{l u}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{u} \gamma_{\mu} u\right), \quad O_{l d}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{d} \gamma_{\mu} d\right), \\
O_{e e}=\frac{1}{2}\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{e u}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{u} \gamma_{\mu} u\right), \quad O_{e d}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{d} \gamma_{\mu} d\right) ;
\end{array}
$$

- Operators modifying gauge-fermion couplings:

$$
\begin{aligned}
& O_{h l}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{l} \gamma_{\mu} l\right)+\text { h.c., } \quad O_{h l}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{l} \gamma_{\mu} \sigma^{a} l\right)+\text { h.c. } \\
& O_{h q}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{q} \gamma_{\mu} q\right)+\text { h.c., } \quad O_{h q}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{q} \gamma_{\mu} \sigma^{a} q\right)+\text { h.c. } \\
& O_{h u}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{u} \gamma_{\mu} u\right)+\text { h.c., } \quad O_{h d}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{d} \gamma_{\mu} d\right)+\text { h.c. } \\
& O_{h e}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{e} \gamma_{\mu} e\right)+\text { h.c.; }
\end{aligned}
$$

- Operator modifying the triple-gauge couplings:

$$
O_{W}=\epsilon^{a b c} W_{\mu}^{a \nu} W_{\nu}^{b \lambda} W_{\lambda}^{c \mu}
$$

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{S M}+a_{W B} O_{W B}+a_{h} O_{h}+\ldots a_{W} O_{W} \\
a_{i} \text { dimension }(-2) \sim \frac{1}{\Lambda^{2}}
\end{gathered}
$$

- Calculate to linear order in a_{i} the corrections to the observables - only consider the interference between the SM and the new physics contribution:

Tree level calculation, amplitude $\mathcal{M}_{N P}$ linear in a_{i}

$$
X_{t h}\left(a_{i}\right) \sim|\mathcal{M}|^{2}=\left|\mathcal{M}_{S M}+\mathcal{M}_{N P}\right|^{2}=\left|\mathcal{M}_{S M}\right|^{2}+2 \operatorname{Re}\left(\mathcal{M}_{S M} \mathcal{M}_{N P}^{*}\right)
$$

$X_{t h}\left(a_{i}\right)$: theoretical prediction for an observable X, linear in a_{i}.

$$
X_{t h}\left(a_{i}\right)=X_{S M}+\sum_{i} a_{i} \Delta X_{i}
$$

The observables

M_{Z}, α, G_{F} : input parameters $\rightarrow g, g^{\prime}, v$.

	Standard Notation	Measurement
Atomic parity	$Q_{W}(C s)$	Weak charge in Cs
violation	$Q_{W}(T l)$	Weak charge in Tl
DIS	g_{L}^{2}, g_{R}^{2}	ν_{μ}-nucleon scattering from NuTeV
	R^{ν}	ν_{μ}-nucleon scattering from CDHS and CHARM
	κ	ν_{μ}-nucleon scattering from CCFR
	$g_{V}^{\nu e}, g_{A}^{\nu e}$	$\nu-e$ scattering from CHARM II
Z-pole	Γ_{Z}	Total Z width
	σ_{h}^{0}	$e^{+} e^{-}$hadronic cross section at Z pole
	$R_{f}^{0}(f=e, \mu, \tau, b, c)$	Ratios of decay rates
	$A_{F B}^{0, f}(f=e, \mu, \tau, b, c)$	Forward-backward asymmetries
	$\sin ^{2} \theta_{e f f}^{l e p t}\left(Q_{F B}\right)$	Hadronic charge asymmetry
	$A_{f}(f=e, \mu, \tau, b, c)$	Polarized asymmetries
Fermion pair	$\sigma_{f}(f=q, \mu, \tau)$	Total cross sections for $e^{+} e^{-} \rightarrow f \bar{f}$
production at	$A_{F B}^{f}(f=\mu, \tau)$	Forward-backward asymmetries for $e^{+} e^{-} \rightarrow f \bar{f}$
LEP2	$d \sigma_{e} / d \cos \theta$	Differential cross section for $e^{+} e^{-} \rightarrow e^{+} e^{-}$
W pair	$d \sigma_{W} / d \cos \theta$	Differential cross section for $e^{+} e^{-} \rightarrow W^{+} W^{-}$
	M_{W}	W mass

Table 2: Relevant measurements

- High precision.
- Operator $\frac{1}{\Lambda^{2}} \bar{l} \sigma^{\mu \nu} e h B_{\mu \nu}$ contributes at tree level, but violates flavor symmetry.
- Other operators contribute at loop level, but not constrained as well as using all other measurements.
- For simplicity, ignore $g-2$.
- Constraints on individual operators not useful, because corrections are correlated.
- Compare with experiments and calculate the χ^{2} distribution in terms of a_{i} :

$$
\begin{gathered}
\chi^{2}\left(a_{i}\right)=\sum_{X} \frac{\left(X_{t h}\left(a_{i}\right)-X_{e x p}\right)^{2}}{\sigma_{X}^{2}}=\chi_{S M}^{2}+a_{i} \hat{v}_{i}+a_{i} M_{i j} a_{j} . \\
M_{i j}, v_{i}: \text { our results }
\end{gathered}
$$

$$
M_{i j}: 21 \text { by } 21 \text { symmetric matrix; } \quad v_{i}: 21 \text {-vector }
$$

- Diagonal elements $M_{i i}$, tell us how well the operators are constrained.

$$
\Lambda \sim M_{i i}^{\frac{1}{4}}=1.3 \sim 17 \mathrm{TeV} .
$$

- Constraints can be obtained from the χ^{2} for arbitrary linear combinations of the operators. \rightarrow Constrain generic models.

Numerical results

$a_{W B}$	$9.1 e 4$																			
a_{h}	$2.4 e 4$	$7.9 e 3$																		
$a_{l l}^{s}$	-78.	-51.	$5.8 e 2$																	
$a_{l l}^{t}$	$-3.9 e 4$	$-1.2 e 4$	$6.7 e 2$	$2.2 e 4$																
$a_{l q}^{s}$	$-1.4 e 3$	$-1.6 e 2$	0.	$1.5 e 2$	$2.7 e 3$															
$a_{l q}^{t}$	$-5.5 e 2$	$-1.4 e 2$	0.	$5.9 e 2$	$4.6 e 2$	$2.9 e 3$														
$a_{l e}$	-56.	-9.7	$2.8 e 2$	$3.0 e 2$	0.	0.	$1.3 e 3$													
$a_{q e}$	$1.3 e 3$	72.	0.	$-1.4 e 2$	$-2.7 e 3$	$-7.4 e 2$	0.	$2.8 e 3$												
$a_{l u}$	$-4.0 e 2$	3.8	0.	$-1.1 e 2$	$1.2 e 3$	$-2.5 e 2$	0.	$-1.2 e 3$	$7.1 e 2$											
$a_{l d}$	$-6.9 e 2$	-6.9	0.	66.	$1.4 e 3$	$3.3 e 2$	0.	$-1.4 e 3$	$5.8 e 2$	$7.8 e 2$										
$a_{e e}$	-59.	-42.	$5.3 e 2$	$6.1 e 2$	0.	0.	$2.6 e 2$	0.	0.	0.	$4.8 e 2$									
$a_{e u}$	$7.8 e 2$	$1.1 e 2$	0.	$-2.1 e 2$	$-1.3 e 3$	$-9.1 e 2$	0.	$1.4 e 3$	$-4.8 e 2$	$-7.3 e 2$	0.	$8.4 e 2$								
$a_{e d}$	$4.2 e 2$	-83.	0.	$1.7 e 2$	$-1.3 e 3$	$5.5 e 2$	0.	1.3 e 3	$-7.3 e 2$	$-6.8 e 2$	0.	$4.7 e 2$	$8.8 e 2$							
$a_{h l}^{s}$	$-1.7 e 4$	$-4.1 e 3$	$1.5 e 2$	$9.7 e 3$	$-5.9 e 2$	8.3 e 2	17.	$3.7 e 2$	$-3.9 e 2$	$-1.6 e 2$	$1.3 e 2$	66.	$3.8 e 2$	$5.5 e 4$						
$a_{h l}^{t}$	$5.9 e 4$	$1.7 e 4$	-43.	$-3.0 e 4$	$-7.1 e 2$	$-6.6 e 2$	-31.	$6.6 e 2$	-82.	$-3.4 e 2$	-32.	$4.9 e 2$	47.	$1.5 e 4$	$6.3 e 4$					
$a_{h q}^{s}$	$-1.9 e 3$	$-1.4 e 3$	0.	$2.7 e 3$	$-2.6 e 3$	-72.	0.	$2.6 e 3$	$-1.2 e 3$	$-1.4 e 3$	0.	$1.2 e 3$	$1.4 e 3$	$-6.6 e 3$	$-8.7 e 3$	$6.0 e 3$				
$a_{h q}^{t}$	$-9.3 e 3$	$-4.5 e 3$	0.	$8.7 e 3$	-49.	$3.5 e 2$	0.	56.	$-1.4 e 2$	-36 .	0.	-64.	$1.8 e 2$	$-2.4 e 4$	$-3.1 e 4$	$7.7 e 3$	$2.6 e 4$			
$a_{h u}$	$-6.1 e 2$	$-6.6 e 2$	0.	$1.2 e 3$	$-1.2 e 3$	-4.	0.	$1.2 e 3$	$-5.1 e 2$	$-6.9 e 2$	0.	$5.7 e 2$	$6.7 e 2$	$-3.7 e 3$	$-4.4 e 3$	$2.2 e 3$	$4.1 e 3$	$1.4 e 3$		
$a_{h d}$	$1.2 e 3$	$4.3 e 2$	0.	$-8.1 e 2$	$-1.4 e 3$	$-1.3 e 2$	0.	$1.4 e 3$	$-6.9 e 2$	$-7.2 e 2$	0.	$6.7 e 2$	$7.3 e 2$	3.3 e 3	3.6 e 3	$4.2 e 2$	$-2.9 e 3$	$1.6 e 2$	$1.1 e 3$	
$a_{\text {he }}$	$-2.8 e 4$	$-4.6 e 3$	$-1.1 e 2$	9.0 e3	$4.6 e 2$	$-1.6 e 2$	23.	$-4.5 e 2$	$2.5 e 2$	$2.4 e 2$	-96.	$-1.7 e 2$	$-3.0 e 2$	$-2.5 e 4$	$-3.2 e 4$	4.5 e 3	$1.7 e 4$	2.3 e3	$-2.1 e 3$	$3.2 e 4$
a_{W}	7.7	4.5	0.	-4.2	0 .	0.	0.	0.	0.	0.	0.	0.	0.	6.3	-1.7	0.	0.8	0 .	0.	1.4
	$a_{W B}$	a_{h}	$a_{l l}^{s}$	$a_{l l}^{t}$	$a_{l q}^{s}$	$a_{l q}^{t}$	$a_{l e}$	$a_{q e}$	$a_{l u}$	$a_{l d}$	$a_{e e}$	$a_{\text {eu }}$	$a_{\text {ed }}$	$a_{h l}^{s}$	$a_{h l}^{t}$	$a_{h q}^{s}$	$a_{h q}^{t}$	$a_{h u}$	$a_{\text {hd }}$	$a_{\text {he }}$

Table 3: The elements of the matrix \mathcal{M}. Since it is a symmetric matrix we do not list the redundant elements. The matrix is equal to the numbers listed above times $10^{12}(\mathrm{GeV})^{4}$. We abbreviate the powers 10^{n} as en to save space.

$$
\begin{aligned}
\hat{v}_{i}= & \left\{1.5,10^{2},-23 ., 49 ., 76 .,-1.1,10^{2},-2.4,10^{2}, 29 ., 1.4,10^{2},-36 .,-68 ., 44 .,\right. \\
& \left.1.0,10^{2}, 15 .,-6.4,10^{2},-88 ., 1.0,10^{2}, 1.7,10^{2}, 71 ., 63 ., 1.8,10^{2}, 1.0\right\}
\end{aligned}
$$

the S and T fit

$$
S=\frac{4 s c v^{2} a_{W B}}{\alpha}, \quad T=-\frac{v^{2}}{2 \alpha} a_{h} .
$$

- Setting all a_{i}, but $a_{W B}$ and a_{h}, to zero.

$$
\begin{aligned}
\chi^{2} & =\chi_{0}^{2}+\left(\begin{array}{ll}
a_{W B} & a_{h}
\end{array}\right)\left(\begin{array}{cc}
9.110^{16} & 2.410^{16} \\
2.410^{16} & 7.910^{15}
\end{array}\right)\binom{a_{W B}}{a_{h}}+1.510^{8} a_{W B}-2.310^{7} a_{h} \\
& =\chi_{0}^{2}+\left(\begin{array}{ll}
S & T
\end{array}\right)\left(\begin{array}{cc}
5.410^{2} & -4.810^{2} \\
-4.810^{2} & 5.310^{2}
\end{array}\right)\binom{S}{T}+12 . S+5.9 T .
\end{aligned}
$$

Figure 1: Allowed region for S and T at 90% confidence level.

Oblique Parameters

constraints on gauge boson self-energies

Relax the flavor symmetry

- TeV scale flavor physics involving the third generation still allowed.
- Treat the third generation differently: $U(3) \rightarrow U(2) \times U(1)$.

$$
\text { Example: } \frac{1}{\Lambda^{2}} \bar{e} \bar{e} \bar{b} .
$$

- 16 more operators.
- Do not add flavor-changing experiments.

Old operators

- Sum over only the first two generations.

$$
\begin{aligned}
& O_{W B}=\left(h^{\dagger} \sigma^{a} h\right) W_{\mu \nu}^{a} B^{\mu \nu}, \quad O_{h}=\left|h^{\dagger} D_{\mu} h\right|^{2} ; \\
& O_{l l}^{s}=\frac{1}{2}\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{l} \gamma_{\mu} l\right), \quad O_{l l}^{t}=\frac{1}{2}\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{l} \gamma_{\mu} \sigma^{a} l\right), \\
& O_{l q}^{s}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{q} \gamma_{\mu} q\right), \quad O_{l q}^{t}=\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{q} \gamma_{\mu} \sigma^{a} q\right), \\
& O_{l e}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{q e}=\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{e} \gamma_{\mu} e\right), \\
& O_{l u}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{u} \gamma_{\mu} u\right), \quad O_{l d}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{d} \gamma_{\mu} d\right), \\
& O_{e e}=\frac{1}{2}\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{e u}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{u} \gamma_{\mu} u\right), \quad O_{e d}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{d} \gamma_{\mu} d\right) ; \\
& O_{h l}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{l} \gamma_{\mu} l\right)+\text { h.c. }, \quad O_{h l}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{l} \gamma_{\mu} \sigma^{a} l\right)+\text { h.c. } \\
& O_{h q}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{q} \gamma_{\mu} q\right)+\text { h.c., } \quad O_{h q}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{q} \gamma_{\mu} \sigma^{a} q\right)+\text { h.c. } \\
& O_{h u}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{u} \gamma_{\mu} u\right)+\text { h.c. }, \quad O_{h d}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{d} \gamma_{\mu} d\right)+\text { h.c. } \\
& O_{h e}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{e} \gamma_{\mu} e\right)+\text { h.c.; } \\
& O_{W}=\epsilon^{a b c} W_{\mu}^{a \nu} W_{\nu}^{b \lambda} W_{\lambda}^{c \mu} .
\end{aligned}
$$

New operators

- Q, L, b, t, τ : the third generation fermions.
- Four-fermion operators:

$$
\begin{aligned}
& O_{l L}^{s}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{L} \gamma_{\mu} L\right), \quad O_{l L}^{t}=\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{L} \gamma_{\mu} \sigma^{a} L\right), \\
& O_{l Q}^{s}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{Q} \gamma_{\mu} Q\right), \quad O_{l Q}^{t}=\left(\bar{l} \gamma^{\mu} \sigma^{a} l\right)\left(\bar{Q} \gamma_{\mu} \sigma^{a} Q\right), \\
& O_{L e}=\left(\bar{L} \gamma^{\mu} L\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{l \tau}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{\tau} \gamma_{\mu} \tau\right) \\
& O_{Q e}=\left(\bar{Q} \gamma^{\mu} Q\right)\left(\bar{e} \gamma_{\mu} e\right), \quad O_{l b}=\left(\bar{l} \gamma^{\mu} l\right)\left(\bar{b} \gamma_{\mu} b\right) \\
& O_{e \tau}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{\tau} \gamma_{\mu} \tau\right), \quad O_{e b}=\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{b} \gamma_{\mu} b\right)
\end{aligned}
$$

- Operators modifying gauge-fermion couplings:

$$
\begin{aligned}
& O_{h L}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{L} \gamma_{\mu} L\right)+\text { h.c., } \quad O_{h L}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{L} \gamma_{\mu} \sigma^{a} L\right)+\text { h.c. } \\
& O_{h Q}^{s}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{Q} \gamma_{\mu} Q\right)+\text { h.c., } \quad O_{h Q}^{t}=i\left(h^{\dagger} \sigma^{a} D^{\mu} h\right)\left(\bar{Q} \gamma_{\mu} \sigma^{a} Q\right)+\text { h.c. } \\
& O_{h \tau}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{\tau} \gamma_{\mu} \tau\right)+\text { h.c., } \quad O_{h b}=i\left(h^{\dagger} D^{\mu} h\right)\left(\bar{b} \gamma_{\mu} b\right)+\text { h.c.. }
\end{aligned}
$$

$\rightarrow 16$ more operators, but the same method.

Applications

- General procedure
- Integrating out the heavy particles.
- Obtain operator coefficients a_{i} as functions of the parameters in the model.

$$
a_{i}=a_{i}(m, g, \ldots)
$$

- Substitute the coefficients in the χ^{2} distribution.
- Calculate bounds, draw plots, ...

Little Higgs models

- One-loop quadratic divergence from top, gauge boson and Higgs loops canceled by particles of same spin.
- Cutoff pushed up to $\gtrsim 10 \mathrm{TeV}$.
- Heavy fermions, gauge bosons, scalars \rightarrow to be integrated out.
- Gauge group enlarged: $S U(2)_{1} \times S U(2)_{2} \times U(1)_{1} \times U(1)_{2} \rightarrow S U(2)_{W} \times$ $U(1)_{Y}$.
- heavy gauge bosons W^{\prime}, Z^{\prime} of TeV scale mass;
- gauge coupling $g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}: g=\frac{g_{1} g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}, g^{\prime}=\frac{g_{1}^{\prime} 9_{2}^{\prime}}{\sqrt{g_{1}^{\prime}+g_{2}^{\prime}}}$;

Define: $g=g_{1} s=g_{2} c, \quad g^{\prime}=g_{1}^{\prime} s^{\prime}=g_{2}^{\prime} c^{\prime}$.
$-Y=Y_{1}+Y_{2}$.
$-M_{W^{\prime}}=\frac{g F}{2 s c}, \quad M_{Z^{\prime}}=\frac{g^{\prime} F}{\sqrt{8 s^{\prime} c^{\prime}}}$.

Integrating out heavy particles

- Heavy gauge bosons introduce $O_{h}, O_{h f}, O_{f f}$.
- Choose the heavy fermions to mix with the top quark, but not the bottom quark-does not affect EWPT at tree level.

$$
\begin{align*}
a_{h} & =-\frac{1}{F^{2}}\left[\left(c^{\prime 2}-s^{\prime 2}\right)^{2}+\frac{1}{2} \cos ^{2}(2 \beta)\right], \\
a_{h q}^{t} & =a_{h l}^{t}=-\frac{1}{2 F^{2}}\left(c^{2}-s^{2}\right) c^{2}, \\
a_{h f}^{s} & =\frac{2 s^{\prime} c^{\prime}\left(c^{\prime 2}-s^{\prime 2}\right)}{F^{2}}\left(Y_{2}^{f} \frac{s^{\prime}}{c^{\prime}}-Y_{1}^{f} \frac{c^{\prime}}{s^{\prime}}\right), \\
a_{l q}^{t} & =a_{l l}^{t}=-\frac{c^{4}}{F^{2}}, \\
a_{f f^{\prime}}^{s} & =\frac{-8 s^{\prime 2} c^{\prime 2}}{F^{2}}\left(Y_{2}^{f} \frac{s^{\prime}}{c^{\prime}}-Y_{1}^{f} \frac{c^{\prime}}{s^{\prime}}\right)\left(Y_{2}^{\left.f^{\prime} \frac{s^{\prime}}{c^{\prime}}-Y_{1}^{f^{\prime}} \frac{c^{\prime}}{s^{\prime}}\right) .} \begin{array}{l}
\text { and }
\end{array}\right) \tag{1}
\end{align*}
$$

- To obtain bounds on physical mass:

$$
M_{W^{\prime}}=\frac{g F}{2 s c} ; \quad M_{t^{\prime}} \geq \sqrt{2} \lambda_{t} F, \text { take } M_{t^{\prime}}=\sqrt{2} F
$$

Bounds

- To suppress the corrections? $Y_{1}^{f}=Y_{2}^{f}, s^{\prime}=c^{\prime}$.

Figure 2: 95% CL lower bounds in TeV on $M_{t^{\prime}}$ (left) and $M_{W^{\prime}}$ (right) as functions of c and $t \equiv \tan \beta$ for $Y_{1}^{f}=Y_{2}^{f}$ and $s^{\prime}=c^{\prime}$.

- $S U(2)_{1} \times S U(2)_{2} \times U(1)_{Y} \rightarrow S U(2)_{L} \times U(1)_{Y}$
by $\langle\Sigma\rangle=\operatorname{diag}\{u, u\}$.
- $Q:(2,1)_{1 / 6}, \quad L:(2,1)_{-1 / 2}, \quad q:(1,2)_{1 / 6}, \quad l:(1,2)_{-1 / 2}$.
- The "heavy" case: $h=(2,1)_{1 / 2}$.

The "light" case: $h=(1,2)_{1 / 2}$.

- $g=g_{1} g_{2} / \sqrt{g_{1}^{2}+g_{2}^{2}}$.
$c=g_{1} / \sqrt{g_{1}^{2}+g_{2}^{2}}, \quad s=g_{2} / \sqrt{g_{1}^{2}+g_{2}^{2}}$.
- $M_{Z^{\prime}}^{2}=M_{W^{\prime \pm}}^{2}=\left(g_{1}^{2}+g_{2}^{2}\right) u^{2}$.

The operators
Light case:

$$
\begin{aligned}
& a_{l l}^{t}=a_{l q}^{t}=a_{h l}^{t}=a_{h q}^{t}=-\frac{1}{4 u^{2}} s^{4} \\
& a_{l L}^{t}=a_{l Q}^{t}=a_{h L}^{t}=a_{h Q}^{t}=\frac{1}{4 u^{2}} s^{2} c^{2}
\end{aligned}
$$

Heavy case:

$$
\begin{aligned}
& a_{l l}^{t}=a_{l q}^{t}=-\frac{1}{4 u^{2}} s^{4} \\
& a_{l L}^{t}=a_{l Q}^{t}=a_{h l}^{t}=a_{h q}^{t}=\frac{1}{4 u^{2}} s^{2} c^{2}, \\
& a_{h L}^{t}=a_{h Q}^{t}=-\frac{1}{4 u^{2}} c^{4}
\end{aligned}
$$

Compare...

Heavy case:

$$
\begin{aligned}
M_{W} & =\left(M_{W}\right)_{S M}\left[1-0.219\left(1-c_{\varphi}^{4}\right) \delta\right] \\
\Gamma_{Z} & =\left(\Gamma_{Z}\right)_{S M}\left[1+\left(-1.348+0.790 c_{\varphi}^{4}+1.684 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
\Gamma_{h a d} & =\left(\Gamma_{h a d}\right)_{S M}\left[1+\left(-1.478+0.974 c_{\varphi}^{4}+1.828 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
\Gamma_{e, \mu} & =\left(\Gamma_{e, \mu}\right)_{S M}\left[1+\left(-1.175+1.175 c_{\varphi}^{4}+2.122 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
\Gamma_{i n v} & =\left(\Gamma_{i n v}\right)_{S M}\left[1+\left(-1.000+0.333 c_{\varphi}^{4}+1.333 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
R_{b} & =\left(R_{b}\right)_{S M}\left[1+\left(0.059-1.846 c_{\varphi}^{4}-1.828 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
R_{c} & =\left(R_{c}\right)_{S M}\left[1+\left(-0.114+0.618 c_{\varphi}^{4}+0.583 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
R_{\tau} & =\left(R_{\tau}\right)_{S M}\left[1+\left(-0.302+1.921 c_{\varphi}^{4}+1.828 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
R_{e, \mu} & =\left(R_{e, \mu}\right)_{S M}\left[1+\left(-0.302-0.201 c_{\varphi}^{4}-0.293 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{b} & =\left(A_{b}\right)_{S M}\left[1+\left(-0.232+0.071 c_{\varphi}^{4}\right) \delta\right] \\
A_{c} & =\left(A_{c}\right)_{S M}\left[1+\left(-1.786+1.786 c_{\varphi}^{4}+1.242 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right]
\end{aligned}
$$

$$
\begin{aligned}
A_{s} & =\left(A_{s}\right)_{S M}\left[1+\left(-0.232+0.232 c_{\varphi}^{4}+0.161 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{\tau} & =\left(A_{\tau}\right)_{S M}\left[1+\left(-20.391+6.215 c_{\varphi}^{4}\right) \delta\right] \\
A_{e, \mu} & =\left(A_{e, \mu}\right)_{S M}\left[1+\left(-20.391+20.391 c_{\varphi}^{4}+14.17 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{F B}^{b} & =\left(A_{F B}^{b}\right)_{S M}\left[1+\left(-20.621+20.462 c_{\varphi}^{4}+14.17 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{F B}^{c} & =\left(A_{F B}^{c}\right)_{S M}\left[1+\left(-22.171+22.171 c_{\varphi}^{4}+15.41 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{F B}^{s} & =\left(A_{F B}^{s}\right)_{S M}\left[1+\left(-20.621+20.621 c_{\varphi}^{4}+14.333 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{F B}^{\tau} & =\left(A_{F B}^{\tau}\right)_{S M}\left[1+\left(-40.771+26.602 c_{\varphi}^{4}+14.17 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right] \\
A_{F B}^{e, \mu} & =\left(A_{F B}^{e, \mu}\right)_{S M}\left[1+\left(-40.771+40.771 c_{\varphi}^{4}+28.34 s_{\varphi}^{2} c_{\varphi}^{2}\right) \delta\right]
\end{aligned}
$$

Light case:

$$
\begin{aligned}
M_{W} & =\left(M_{W}\right)_{S M}\left[1+0.219 s_{\varphi}^{4} \delta\right] \\
\Gamma_{Z} & =\left(\Gamma_{Z}\right)_{S M}\left[1+\left(-1.348+1.684 s_{\varphi}^{2} c_{\varphi}^{2}-0.383 s_{\varphi}^{4}\right) \delta\right] \\
\Gamma_{h a d} & =\left(\Gamma_{h a d}\right)_{S M}\left[1+\left(0.504 s_{\varphi}^{2} c_{\varphi}^{2}-0.351 s_{\varphi}^{4}\right) \delta\right] \\
\Gamma_{e, \mu} & =\left(\Gamma_{e, \mu}\right)_{S M}\left[1+\left(-0.947 s_{\varphi}^{4}\right) \delta\right] \\
\Gamma_{i n v} & =\left(\Gamma_{i n v}\right)_{S M}\left[1+\left(0.667 s_{\varphi}^{2} c_{\varphi}^{2}-0.333 s_{\varphi}^{4}\right) \delta\right] \\
R_{b} & =\left(R_{b}\right)_{S M}\left[1+\left(1.787 s_{\varphi}^{2} c_{10}^{2}+1.770 s_{\varphi}^{4}\right) \delta\right]
\end{aligned}
$$

$$
\begin{aligned}
R_{c} & =\left(R_{c}\right)_{S M}\left[1+\left(-0.504 s_{\varphi}^{2} c_{\varphi}^{2}-0.469 s_{\varphi}^{4}\right) \delta\right] \\
R_{\tau} & =\left(R_{\tau}\right)_{S M}\left[1+\left(-1.618 s_{\varphi}^{2} c_{\varphi}^{2}-1.526 s_{\varphi}^{4}\right) \delta\right] \\
R_{e, \mu} & =\left(R_{e, \mu}\right)_{S M}\left[1+\left(0.504 s_{\varphi}^{2} c_{\varphi}^{2}+0.596 s_{\varphi}^{4}\right) \delta\right] \\
A_{b} & =\left(A_{b}\right)_{S M}\left[1+\left(0.161 s_{\varphi}^{2} c_{\varphi}^{2}+0.232 s_{\varphi}^{4}\right) \delta\right] \\
A_{c} & =\left(A_{c}\right)_{S M}\left[1+\left(0.545 s_{\varphi}^{4}\right) \delta\right] \\
A_{s} & =\left(A_{s}\right)_{S M}\left[1+\left(0.171 s_{\varphi}^{4}\right) \delta\right] \\
A_{\tau} & =\left(A_{\tau}\right)_{S M}\left[1+\left(14.171 s_{\varphi}^{2} c_{\varphi}^{2}+20.386 s_{\varphi}^{4}\right) \delta\right] \\
A_{e, \mu} & =\left(A_{e, \mu}\right)_{S M}\left[1+\left(6.215 s_{\varphi}^{4}\right) \delta\right] \\
A_{F B}^{b} & =\left(A_{F B}^{b}\right)_{S M}\left[1+\left(0.161 s_{\varphi}^{2} c_{\varphi}^{2}+6.450 s_{\varphi}^{4}\right) \delta\right] \\
A_{F B}^{c} & =\left(A_{F B}^{c}\right)_{S M}\left[1+\left(6.760 s_{\varphi}^{4}\right) \delta\right] \\
A_{F B}^{s} & =\left(A_{F B}^{s}\right)_{S M}\left[1+\left(6.286 s_{\varphi}^{4}\right) \delta\right] \\
A_{F B}^{\tau} & =\left(A_{F B}^{\tau}\right)_{S M}\left[1+\left(14.171 s_{\varphi}^{2} c_{\varphi}^{2}+26.602 s_{\varphi}^{4}\right) \delta\right] \\
A_{F B}^{e, \mu} & =\left(A_{F B}^{e, \mu}\right)_{S M}\left[1+\left(12.431 s_{\varphi}^{4}\right) \delta\right]
\end{aligned}
$$

Bounds

Figure 3: Lower bounds at $95 \% \mathrm{CL}$ on $M_{W^{\prime}}$ as a function of s in the $S U(2) \times S U(2) \times U(1)$ model. The upper curve corresponds to the heavy case and the lower curve corresponds to the light case.

$$
\begin{aligned}
& -\frac{g O_{W B}}{2}+g^{\prime} O_{h}+g^{\prime} \sum_{f} Y^{f} O_{h f}^{s}=2 i B_{\mu \nu} D^{\mu} h^{\dagger} D^{\nu} h \\
& -g^{\prime} O_{W B}+g\left(O_{h l}^{t}+O_{h q}^{t}\right)=4 i W_{\mu \nu} D^{\mu} h^{\dagger} \sigma^{a} D^{\nu} h
\end{aligned}
$$

- Triple-gauge couplings measured only from differential cross-section for W pair production \rightarrow less constrained.

- Some directions are more constrained than the others.
- Change the basis:

$$
\hat{S}, \hat{T}, \hat{U}, V, X, W, Y, C_{q}, \delta \varepsilon_{q}, \delta \varepsilon_{b}
$$

- Electroweak precision tests can put constraints on TeV scale extensions of the SM.
- We have done a model-independent analysis on electroweak constraints, using the effective theory approach.
- Constraints on general TeV scale models can be easily obtained using our results.

