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Outline

• The hierarchy problem in the standard model and TeV scale

new physics

• Electroweak constraints on TeV scale physics

• Effective theory analysis of electroweak data

• Applications to TeV scale models

• Conclusion
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The hierarchy problem of the standard model

•
Planck scale: MPl ∼ 1019GeV

EWSB scale: v = 246GeV

}
=⇒ Huge gap in between.

• EWSB scale unstable—radiative corrections to the Higgs mass.

M 2
h = M 2

h(tree) + radiative corrections

– One loop quadratically divergent corrections to the Higgs mass:

top loop: − 3
8π2λ

2
tΛ

2

SU(2) gauge boson loop: 9
64π2g

2Λ2

Higgs loop: 1
16π2λ

2Λ2

Λ : cutoff; λt : top Yukawa coupling; λ : Higgs quartic coupling
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TeV scale new physics

• Fine-tuning less than 10% =⇒ Λ . O(1) TeV:

3

8π2
λ2

tΛ
2 < 10× (200GeV)2 =⇒ Λ . 3TeV

• Cutoff ∼ TeV =⇒ TeV scale extensions of the SM.

SUSY, technicolor, extra-dimensions, little Higgs, . . .

• Predict heavy particles → awaiting direct probe at Tevatron, LHC, (ILC),

. . .

• Indirect information from electroweak precision tests (EWPTs).
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Electroweak precision tests

• Established the SM of electroweak physics.

• Good precision: 1% level or better.

• Include observables from:

– Atomic parity violation experiments;

– Deep inelastic scattering: neutrino-nucleon, neutrino-electron scatter-

ing;

– e+e− → f̄f , e+e− → W+W− scattering;

– W boson mass;

. . .
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Constraining new physics

• An example: Z ′ gauge boson.

– Affect e+e− → f̄f scattering:

– No significant deviation from the SM prediction.

=⇒ Constraints on Z ′ mass or Z ′-fermion couplings.
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Model independent analysis

• Generally, no significant deviations from the SM =⇒ Constraints reduce

the number of models, allow us to focus on more promising ones.

• Model-independent method

– Global constraints—using all relevant data.

– Avoid repeating the calculations.

– Example: oblique parameters S, T, U, . . .

→ Not enough, non-oblique corrections are common. (e.x. Z ′).

→ Model-dependent corrections to observables calculated from time to

time in the literature.
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The observables

Standard Notation Measurement
Atomic parity QW (Cs) Weak charge in Cs

violation QW (T l) Weak charge in Tl
DIS g2

L, g2
R νµ-nucleon scattering from NuTeV

Rν νµ-nucleon scattering from CDHS and CHARM
κ νµ-nucleon scattering from CCFR

gνe
V , gνe

A ν-e scattering from CHARM II
Z-pole ΓZ Total Z width

σ0
h e+e− hadronic cross section at Z pole

R0
f (f = e, µ, τ, b, c) Ratios of decay rates

A0,f
FB(f = e, µ, τ, b, c) Forward-backward asymmetries

sin2 θlept
eff (QFB) Hadronic charge asymmetry

Af (f = e, µ, τ, b, c) Polarized asymmetries

Fermion pair σf (f = q, µ, τ) Total cross sections for e+e− → ff

production at Af
FB(f = µ, τ) Forward-backward asymmetries for e+e− → ff

LEP2 dσe/d cos θ Differential cross section for e+e− → e+e−

W pair dσW /d cos θ Differential cross section for e+e− → W+W−

MW W mass

Table 1: Relevant measurements
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The effective theory approach

• Below the cutoff Λ, after integrating out the heavy particles:

L = LSM +
1

Λ2

∑
i

ciOi +
1

Λ4
(. . .) + . . .

• Only the SM fields appear in the operators Oi.

• The operators Oi conserve the SM gauge symmetry. =⇒ The number of

Oi is finite to a given order in Λ.

• The coefficients ci record the effects of the heavy particles. If taken arbitrary

→ model-independent analysis.
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Procedure

• Identify relevant operators,add them to the SM Lagrangian

L = LSM +
∑

i

aiOi

.

• Calculate deviations to observables from the SM predictions, assuming ar-

bitrary ai.

• Compare with data, obtain constraints on ai.

• For a given model, translate constraints on ai to constraints on model

parameters (mass, coupling. . . ).
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Reduce the number of operators

• Given the current experimental precision, enough to focus on dimension-6

operators, since higher order operators are suppressed by more powers of

Λ2.

• Keep only independent operators

– Equations of motion

– Integration by part

• Keep operators that are relevant to TeV scales: imposing symmetries on

the operators. “over-constrained”

• Remove operators not tightly constrained by EWPTs. “poorly constrained”
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Symmetries of the operators

Remove “over-constrained” operators by imposing symmetries:

• Baryon and lepton number conservation.

• CP invariance.

• flavor conservation, U(3)5 symmetry.
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Flavor symmetry

• Avoid operators like 1
Λ2 s̄ds̄d, Λ > 1000 TeV.

• U(1) symmetry for each flavor? 1
Λ2(c1d̄dd̄d + c2s̄ss̄s + c3b̄bb̄b)? In what

basis?

• Simpler solution—flavor universality, U(3)5 symmetry.

– One U(3) for each SM fermion representation: q, l, u, d, e.

q, l : left-handed doublets; u, d, e : right handed singlet.

– Omit flavor indices. (q̄iqiūjuj → q̄qūu).

• Processes involving the third generation are not constrained as well→ flavor

symmetry relaxed to [U(2)× U(1)]5 later.
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Remove operators not tightly constrained

• Remove not or “poorly” constrained operators.

Example:

– Not constrained

∂µ(h†h)∂µ(h†h)

– Poorly constrained

(q̄γµq)(q̄γµq)

• 21 operators are left.

14



The 21 operators

• Operators modifying gauge boson propagators:

OWB = (h†σah)W a
µνB

µν, Oh = |h†Dµh|2;

These two operators correspond respectively to the S and T parameters.

• Four-fermion operators:

Os
ll =

1

2
(lγµl)(lγµl), Ot

ll =
1

2
(lγµσal)(lγµσ

al),

Os
lq = (lγµl)(qγµq), Ot

lq = (lγµσal)(qγµσ
aq),

Ole = (lγµl)(eγµe), Oqe = (qγµq)(eγµe),

Olu = (lγµl)(uγµu), Old = (lγµl)(dγµd),

Oee =
1

2
(eγµe)(eγµe), Oeu = (eγµe)(uγµu), Oed = (eγµe)(dγµd);
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The 21 operators

• Operators modifying gauge-fermion couplings:

Os
hl = i(h†Dµh)(lγµl) + h.c., Ot

hl = i(h†σaDµh)(lγµσ
al) + h.c.,

Os
hq = i(h†Dµh)(qγµq) + h.c., Ot

hq = i(h†σaDµh)(qγµσ
aq) + h.c.,

Ohu = i(h†Dµh)(uγµu) + h.c., Ohd = i(h†Dµh)(dγµd) + h.c.,

Ohe = i(h†Dµh)(eγµe) + h.c. ;

• Operator modifying the triple-gauge couplings:

OW = εabc W aν
µ W bλ

ν W cµ
λ .
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The calculation

•
L = LSM + aWBOWB + ahOh + . . . aWOW

ai dimension (−2) ∼ 1

Λ2

.

• Calculate to linear order in ai the corrections to the observables—only

consider the interference between the SM and the new physics contribution:

Tree level calculation, amplitude MNP linear in ai

Xth(ai) ∼ |M|2 = |MSM +MNP |2 = |MSM |2 + 2Re(MSMM∗
NP )

Xth(ai): theoretical prediction for an observable X , linear in ai.

Xth(ai) = XSM +
∑

i

ai∆Xi.
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The observables

MZ, α,GF : input parameters → g, g′, v.

Standard Notation Measurement
Atomic parity QW (Cs) Weak charge in Cs

violation QW (T l) Weak charge in Tl
DIS g2

L, g2
R νµ-nucleon scattering from NuTeV

Rν νµ-nucleon scattering from CDHS and CHARM
κ νµ-nucleon scattering from CCFR

gνe
V , gνe

A ν-e scattering from CHARM II
Z-pole ΓZ Total Z width

σ0
h e+e− hadronic cross section at Z pole

R0
f (f = e, µ, τ, b, c) Ratios of decay rates

A0,f
FB(f = e, µ, τ, b, c) Forward-backward asymmetries

sin2 θlept
eff (QFB) Hadronic charge asymmetry

Af (f = e, µ, τ, b, c) Polarized asymmetries

Fermion pair σf (f = q, µ, τ) Total cross sections for e+e− → ff

production at Af
FB(f = µ, τ) Forward-backward asymmetries for e+e− → ff

LEP2 dσe/d cos θ Differential cross section for e+e− → e+e−

W pair dσW /d cos θ Differential cross section for e+e− → W+W−

MW W mass

Table 2: Relevant measurements
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g-2?

– High precision.

– Operator 1
Λ2 l̄σ

µνehBµν contributes at tree level, but violates flavor sym-

metry.

– Other operators contribute at loop level, but not constrained as well as

using all other measurements.

– For simplicity, ignore g − 2.
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• Constraints on individual operators not useful, because corrections are cor-

related.

• Compare with experiments and calculate the χ2 distribution in terms of ai:

χ2(ai) =
∑
X

(Xth(ai)−Xexp)
2

σ2
X

= χ2
SM + aiv̂i + aiMijaj.

Mij, vi: our results

Mij : 21 by 21 symmetric matrix; vi : 21-vector

• Diagonal elements Mii, tell us how well the operators are constrained.

Λ ∼ M
1
4
ii = 1.3 ∼ 17 TeV.

• Constraints can be obtained from the χ2 for arbitrary linear combinations

of the operators. → Constrain generic models.
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Numerical results

aWB 9.1e4

ah 2.4e4 7.9e3

as
ll −78. −51. 5.8e2

at
ll −3.9e4 −1.2e4 6.7e2 2.2e4

as
lq −1.4e3 −1.6e2 0. 1.5e2 2.7e3

at
lq −5.5e2 −1.4e2 0. 5.9e2 4.6e2 2.9e3

ale −56. −9.7 2.8e2 3.0e2 0. 0. 1.3e3

aqe 1.3e3 72. 0. −1.4e2 −2.7e3 −7.4e2 0. 2.8e3

alu −4.0e2 3.8 0. −1.1e2 1.2e3 −2.5e2 0. −1.2e3 7.1e2

ald −6.9e2 −6.9 0. 66. 1.4e3 3.3e2 0. −1.4e3 5.8e2 7.8e2

aee −59. −42. 5.3e2 6.1e2 0. 0. 2.6e2 0. 0. 0. 4.8e2

aeu 7.8e2 1.1e2 0. −2.1e2 −1.3e3 −9.1e2 0. 1.4e3 −4.8e2 −7.3e2 0. 8.4e2

aed 4.2e2 −83. 0. 1.7e2 −1.3e3 5.5e2 0. 1.3e3 −7.3e2 −6.8e2 0. 4.7e2 8.8e2

as
hl −1.7e4 −4.1e3 1.5e2 9.7e3 −5.9e2 8.3e2 17. 3.7e2 −3.9e2 −1.6e2 1.3e2 66. 3.8e2 5.5e4

at
hl 5.9e4 1.7e4 −43. −3.0e4 −7.1e2 −6.6e2 −31. 6.6e2 −82. −3.4e2 −32. 4.9e2 47. 1.5e4 6.3e4

as
hq −1.9e3 −1.4e3 0. 2.7e3 −2.6e3 −72. 0. 2.6e3 −1.2e3 −1.4e3 0. 1.2e3 1.4e3 −6.6e3 −8.7e3 6.0e3

at
hq −9.3e3 −4.5e3 0. 8.7e3 −49. 3.5e2 0. 56. −1.4e2 −36. 0. −64. 1.8e2 −2.4e4 −3.1e4 7.7e3 2.6e4

ahu −6.1e2 −6.6e2 0. 1.2e3 −1.2e3 −4. 0. 1.2e3 −5.1e2 −6.9e2 0. 5.7e2 6.7e2 −3.7e3 −4.4e3 2.2e3 4.1e3 1.4e3

ahd 1.2e3 4.3e2 0. −8.1e2 −1.4e3 −1.3e2 0. 1.4e3 −6.9e2 −7.2e2 0. 6.7e2 7.3e2 3.3e3 3.6e3 4.2e2 −2.9e3 1.6e2 1.1e3

ahe −2.8e4 −4.6e3 −1.1e2 9.0e3 4.6e2 −1.6e2 23. −4.5e2 2.5e2 2.4e2 −96. −1.7e2 −3.0e2 −2.5e4 −3.2e4 4.5e3 1.7e4 2.3e3 −2.1e3 3.2e4

aW 7.7 4.5 0. −4.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.3 −1.7 0. 0.8 0. 0. 1.4 2.6

aWB ah as
ll at

ll as
lq at

lq ale aqe alu ald aee aeu aed as
hl at

hl as
hq at

hq ahu ahd ahe aW

Table 3: The elements of the matrix M. Since it is a symmetric matrix we do not list the redundant elements.
The matrix is equal to the numbers listed above times 1012(GeV)4. We abbreviate the powers 10n as en to save
space.

v̂i = {1.5, 102,−23., 49., 76.,−1.1, 102,−2.4, 102, 29., 1.4, 102,−36.,−68., 44.,

1.0, 102, 15.,−6.4, 102,−88., 1.0, 102, 1.7, 102, 71., 63., 1.8, 102, 1.0}
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the S and T fit

•
S =

4scv2aWB

α
, T = − v2

2α
ah.

• Setting all ai, but aWB and ah, to zero.

χ2 = χ2
0 + (aWB ah)

(
9.1 1016 2.4 1016

2.4 1016 7.9 1015

) (
aWB

ah

)
+ 1.5 108aWB − 2.3 107ah

= χ2
0 + (S T )

(
5.4 102 −4.8 102

−4.8 102 5.3 102

) (
S

T

)
+ 12. S + 5.9 T.
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-0.3 -0.2 -0.1 0.1 0.2

-0.3

-0.2

-0.1

0.1
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T

Figure 1: Allowed region for S and T at 90% confidence level.
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Relax the flavor symmetry

• TeV scale flavor physics involving the third generation still allowed.

• Treat the third generation differently: U(3) → U(2)× U(1).

Example:
1

Λ2
ēeb̄b.

• 16 more operators.

• Do not add flavor-changing experiments.
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Old operators

• Sum over only the first two generations.

OWB = (h†σah)W a
µνB

µν, Oh = |h†Dµh|2;

Os
ll =

1

2
(lγµl)(lγµl), Ot

ll =
1

2
(lγµσal)(lγµσ

al),

Os
lq = (lγµl)(qγµq), Ot

lq = (lγµσal)(qγµσ
aq),

Ole = (lγµl)(eγµe), Oqe = (qγµq)(eγµe),

Olu = (lγµl)(uγµu), Old = (lγµl)(dγµd),

Oee =
1

2
(eγµe)(eγµe), Oeu = (eγµe)(uγµu), Oed = (eγµe)(dγµd);

Os
hl = i(h†Dµh)(lγµl) + h.c., Ot

hl = i(h†σaDµh)(lγµσ
al) + h.c.,

Os
hq = i(h†Dµh)(qγµq) + h.c., Ot

hq = i(h†σaDµh)(qγµσ
aq) + h.c.,

Ohu = i(h†Dµh)(uγµu) + h.c., Ohd = i(h†Dµh)(dγµd) + h.c.,

Ohe = i(h†Dµh)(eγµe) + h.c. ;

OW = εabc W aν
µ W bλ

ν W cµ
λ .
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New operators

• Q,L, b, t, τ : the third generation fermions.

• Four-fermion operators:

Os
lL = (lγµl)(LγµL), Ot

lL = (lγµσal)(Lγµσ
aL),

Os
lQ = (lγµl)(QγµQ), Ot

lQ = (lγµσal)(Qγµσ
aQ),

OLe = (LγµL)(eγµe), Olτ = (lγµl)(τγµτ ),

OQe = (QγµQ)(eγµe), Olb = (lγµl)(bγµb),

Oeτ = (eγµe)(τγµτ ), Oeb = (eγµe)(bγµb);

• Operators modifying gauge-fermion couplings:

Os
hL = i(h†Dµh)(LγµL) + h.c., Ot

hL = i(h†σaDµh)(Lγµσ
aL) + h.c.,

Os
hQ = i(h†Dµh)(QγµQ) + h.c., Ot

hQ = i(h†σaDµh)(Qγµσ
aQ) + h.c.,

Ohτ = i(h†Dµh)(τγµτ ) + h.c., Ohb = i(h†Dµh)(bγµb) + h.c..

→ 16 more operators, but the same method.
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Applications

• General procedure

– Integrating out the heavy particles.

– Obtain operator coefficients ai as functions of the parameters in the

model.

ai = ai(m, g, . . .)

– Substitute the coefficients in the χ2 distribution.

– Calculate bounds, draw plots, . . .
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Little Higgs models

• One-loop quadratic divergence from top, gauge boson and Higgs loops can-

celed by particles of same spin.

• Cutoff pushed up to & 10 TeV.

• Heavy fermions, gauge bosons, scalars → to be integrated out.
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The SU(6)/SP (6) Higgs model I. Low, W. Skiba, D. Smith

• Gauge group enlarged: SU(2)1 × SU(2)2 × U(1)1 × U(1)2 → SU(2)W ×
U(1)Y .

– heavy gauge bosons W ′, Z ′ of TeV scale mass;

– gauge coupling g1, g2, g′1, g′2: g = g1g2√
g2
1+g2

2
, g′ =

g′1g
′
2√

g′21+g′22
;

Define: g = g1s = g2c, g′ = g′1s
′ = g′2c

′.

– Y = Y1 + Y2.

– MW ′ = gF
2sc, MZ ′ = g′F√

8s′c′
.
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Integrating out heavy particles

• Heavy gauge bosons introduce Oh, Ohf , Off .

• Choose the heavy fermions to mix with the top quark, but not the bottom

quark–does not affect EWPT at tree level.
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The operators

ah = − 1

F 2
[(c′2 − s′2)2 +

1

2
cos2(2β)],

at
hq = at

hl = − 1

2F 2
(c2 − s2)c2,

as
hf =

2s′c′(c′2 − s′2)

F 2

(
Y f

2

s′

c′
− Y f

1

c′

s′

)
,

at
lq = at

ll = − c4

F 2
,

as
ff ′ =

−8s′2c′2

F 2

(
Y f

2

s′

c′
− Y f

1

c′

s′

) (
Y f ′

2

s′

c′
− Y f ′

1

c′

s′

)
. (1)

• To obtain bounds on physical mass:

MW ′ =
gF

2sc
; Mt′ ≥

√
2λtF, take Mt′ =

√
2F
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Bounds

• To suppress the corrections? Y f
1 = Y f

2 , s′ = c′.

0.1 0.2 0.3 0.4

2.5

5

7.5

10

c

t

0.1 0.2 0.3 0.4

2.5

5

7.5

10

c

t

0 2 4 6 8

Figure 2: 95% CL lower bounds in TeV on Mt′ (left) and MW ′ (right) as functions of c and
t ≡ tan β for Y f

1 = Y f
2 and s′ = c′.
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SU(2)× SU(2)× U(1) model D. Morrissey, T. Tait and C. Wagner

• SU(2)1 × SU(2)2 × U(1)Y → SU(2)L × U(1)Y
by 〈Σ〉 = diag{u, u}.

• Q : (2, 1)1/6, L : (2, 1)−1/2, q : (1, 2)1/6, l : (1, 2)−1/2.

• The “heavy” case: h = (2, 1)1/2.

The “light” case: h = (1, 2)1/2.

• g = g1g2/
√

g2
1 + g2

2.

c = g1/
√

g2
1 + g2

2, s = g2/
√

g2
1 + g2

2.

• M 2
Z ′ = M 2

W ′± = (g2
1 + g2

2)u
2.
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The operators

Light case:

at
ll = at

lq = at
hl = at

hq = − 1

4u2
s4,

at
lL = at

lQ = at
hL = at

hQ =
1

4u2
s2c2.

Heavy case:

at
ll = at

lq = − 1

4u2
s4,

at
lL = at

lQ = at
hl = at

hq =
1

4u2
s2c2,

at
hL = at

hQ = − 1

4u2
c4.
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Compare. . .

Heavy case:

MW = (MW )SM

[
1− 0.219(1− c4

ϕ)δ
]

ΓZ = (ΓZ)SM

[
1 +

(
−1.348 + 0.790c4

ϕ + 1.684s2
ϕc2

ϕ

)
δ
]

Γhad = (Γhad)SM

[
1 +

(
−1.478 + 0.974c4

ϕ + 1.828s2
ϕc2

ϕ

)
δ
]

Γe,µ = (Γe,µ)SM

[
1 +

(
−1.175 + 1.175c4

ϕ + 2.122s2
ϕc2

ϕ

)
δ
]

Γinv = (Γinv)SM

[
1 +

(
−1.000 + 0.333c4

ϕ + 1.333s2
ϕc2

ϕ

)
δ
]

Rb = (Rb)SM

[
1 +

(
0.059− 1.846c4

ϕ − 1.828s2
ϕc2

ϕ

)
δ
]

Rc = (Rc)SM

[
1 +

(
−0.114 + 0.618c4

ϕ + 0.583s2
ϕc2

ϕ

)
δ
]

Rτ = (Rτ )SM

[
1 +

(
−0.302 + 1.921c4

ϕ + 1.828s2
ϕc2

ϕ

)
δ
]

Re,µ = (Re,µ)SM

[
1 +

(
−0.302− 0.201c4

ϕ − 0.293s2
ϕc2

ϕ

)
δ
]

Ab = (Ab)SM

[
1 +

(
−0.232 + 0.071c4

ϕ

)
δ
]

Ac = (Ac)SM

[
1 +

(
−1.786 + 1.786c4

ϕ + 1.242s2
ϕc2

ϕ

)
δ
]
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As = (As)SM

[
1 +

(
−0.232 + 0.232c4

ϕ + 0.161s2
ϕc2

ϕ

)
δ
]

Aτ = (Aτ )SM

[
1 +

(
−20.391 + 6.215c4

ϕ

)
δ
]

Ae,µ = (Ae,µ)SM

[
1 +

(
−20.391 + 20.391c4

ϕ + 14.17s2
ϕc2

ϕ

)
δ
]

Ab
FB = (Ab

FB)SM

[
1 +

(
−20.621 + 20.462c4

ϕ + 14.17s2
ϕc2

ϕ

)
δ
]

Ac
FB = (Ac

FB)SM

[
1 +

(
−22.171 + 22.171c4

ϕ + 15.41s2
ϕc2

ϕ

)
δ
]

As
FB = (As

FB)SM

[
1 +

(
−20.621 + 20.621c4

ϕ + 14.333s2
ϕc2

ϕ

)
δ
]

Aτ
FB = (Aτ

FB)SM

[
1 +

(
−40.771 + 26.602c4

ϕ + 14.17s2
ϕc2

ϕ

)
δ
]

Ae,µ
FB = (Ae,µ

FB)SM

[
1 +

(
−40.771 + 40.771c4

ϕ + 28.34s2
ϕc2

ϕ

)
δ
]

Light case:

MW = (MW )SM

[
1 + 0.219s4

ϕδ
]

ΓZ = (ΓZ)SM

[
1 +

(
−1.348 + 1.684s2

ϕc2
ϕ − 0.383s4

ϕ

)
δ
]

Γhad = (Γhad)SM

[
1 +

(
0.504s2

ϕc2
ϕ − 0.351s4

ϕ

)
δ
]

Γe,µ = (Γe,µ)SM

[
1 +

(
−0.947s4

ϕ

)
δ
]

Γinv = (Γinv)SM

[
1 +

(
0.667s2

ϕc2
ϕ − 0.333s4

ϕ

)
δ
]

Rb = (Rb)SM

[
1 +

(
1.787s2

ϕc2
ϕ + 1.770s4

ϕ

)
δ
]
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Rc = (Rc)SM

[
1 +

(
−0.504s2

ϕc2
ϕ − 0.469s4

ϕ

)
δ
]

Rτ = (Rτ )SM

[
1 +

(
−1.618s2

ϕc2
ϕ − 1.526s4

ϕ

)
δ
]

Re,µ = (Re,µ)SM

[
1 +

(
0.504s2

ϕc2
ϕ + 0.596s4

ϕ

)
δ
]

Ab = (Ab)SM

[
1 +

(
0.161s2

ϕc2
ϕ + 0.232s4

ϕ

)
δ
]

Ac = (Ac)SM

[
1 +

(
0.545s4

ϕ

)
δ
]

As = (As)SM

[
1 +

(
0.171s4

ϕ

)
δ
]

Aτ = (Aτ )SM

[
1 +

(
14.171s2

ϕc2
ϕ + 20.386s4

ϕ

)
δ
]

Ae,µ = (Ae,µ)SM

[
1 +

(
6.215s4

ϕ

)
δ
]

Ab
FB = (Ab

FB)SM

[
1 +

(
0.161s2

ϕc2
ϕ + 6.450s4

ϕ

)
δ
]

Ac
FB = (Ac

FB)SM

[
1 +

(
6.760s4

ϕ

)
δ
]

As
FB = (As

FB)SM

[
1 +

(
6.286s4

ϕ

)
δ
]

Aτ
FB = (Aτ

FB)SM

[
1 +

(
14.171s2

ϕc2
ϕ + 26.602s4

ϕ

)
δ
]

Ae,µ
FB = (Ae,µ

FB)SM

[
1 +

(
12.431s4

ϕ

)
δ
]
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Bounds
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Figure 3: Lower bounds at 95% CL on MW ′ as a function of s in the SU(2) × SU(2) × U(1) model. The upper
curve corresponds to the heavy case and the lower curve corresponds to the light case.
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Less constrained directions C. Grojean, W. Skiba, J. Terning

−gOWB

2
+ g′Oh + g′

∑
f

Y fOs
hf = 2iBµνD

µh†Dνh,

−g′OWB + g(Ot
hl + Ot

hq) = 4iWµνD
µh†σaDνh,

• Triple-gauge couplings measured only from differential cross-section for W -

pair production → less constrained.
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The “minimal” set G. Gacciapaglia, C. Csaki, G. Marandella, A. Strumia

• Some directions are more constrained than the others.

• Change the basis:

Ŝ, T̂ , Û , V, X, W, Y, Cq, δεq, δεb
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Conclusion

• Electroweak precision tests can put constraints on TeV scale

extensions of the SM.

• We have done a model-independent analysis on electroweak

constraints, using the effective theory approach.

• Constraints on general TeV scale models can be easily ob-

tained using our results.
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