The CDMS, SuperCDMS, and GEODM WIMP Dark Matter Searches

Sunil Golwala UC Davis HEP Seminar October 12, 2010

Outline

- Motivation for Weakly Interacting Massive Particle (WIMP) dark matter
- How to look for WIMPs
- Current status of the Cryogenic Dark Matter Search (CDMS)
- Toward the future with SuperCDMS and the Germanium Observatory for Dark Matter (GEODM)

Why Dark Matter?

- Most of the matter is in the form of dark matter, matter that interacts gravitationally but not electromagnetically, $\Omega_{\rm DM} = \rho_{\rm DM} / \rho_{\rm crit} = 0.228 \pm 0.013$
- The remaining matter is in the form of baryons, $\Omega_B = \rho_B / \rho_{crit} = 0.0456 \pm 0.0015$ (though much of this has not yet been directly observed!)

Required Dark Matter Characteristics

- Dark matter must t
 - Cold/warm (not hot
 - nonrelativistic at m radiation equality (to seed LSS. M < (e.g., v) too hot.
 - Nonbaryonic
 - Light element abun
 + Big Bang Nucleor
 measure baryon de low.
 - Baryonic matter co collapse until recor (z ~ 1100): too late LSS
- Locally, we know
 - density ~ 0.1-0.7 GeV/cm³:
 - ~I proton/3 cm³, ~I WIMP/coffee cup
 - velocity: simplest (not necessarily most accurate!) assumption is truncated Maxwell-Boltzmann distribution with $\sigma_v \approx 270$ km/s, $v_{esc} = 544$ km/sec

Required Dark Matter Characteristics

- Dark matter must be:
 - Cold/warm (not hot):
 - nonrelativistic at matterradiation equality (z ~ 3500) to seed LSS. M < keV (e.g., v) too hot.
 - Nonbaryonic
 - Light element abundances

 Big Bang Nucleosynthesis
 measure baryon density: too
 low.
 - Baryonic matter could not collapse until recombination (z ~ 1100): too late to seed LSS
- Locally, we know
 - density ~ 0.1-0.7 GeV/cm³:
 - ~I proton/3 cm³, ~I WIMP/coffee cup
 - velocity: simplest (not necessarily most accurate!) assumption is truncated Maxwell-Boltzmann distribution with $\sigma_v \approx 270$ km/s, $v_{esc} = 544$ km/sec

WIMPs

- A WIMP δ is like a massive neutrino: produced when T >> m_{δ} via pair annihilation/ creation. Reaction maintains thermal equilibrium.
- If interaction rates high enough, comoving density drops as $exp(-m_{\delta}/T)$ as T drops below m_{δ} : annihilation continues, production becomes suppressed.
- But, weakly interacting → will
 "freeze out" before total annihilation if

$$H > \Gamma_{ann} \sim \frac{n_{\delta}}{\langle \sigma_{ann} \, v \rangle}$$

i.e., if annihilation too slow to keep up with Hubble expansion

• Leaves a relic abundance:

$$\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} v \rangle_{fr}} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

for $m_{\delta} = O(100 \text{ GeV})$ \rightarrow if m_{δ} and σ_{ann} determined by new weak-scale physics, then Ω_{δ} is O(1)

Supersymmetric WIMPs

- Neutralino LSP δ
 - mixture of bino, wino, higgsinos; spin 1/2 Majorana particle
 - Allowed regions
 - bulk: δ annih. via t-ch.
 slepton exchange, light h,
 high BR(b→sγ) and (g-2)_µ;
 good DD rates
 - stau coann: δ and stau nearly degenerate, enhances annih., low DD rates
 - focus point: less fine-tuning of REWSB, δ acquires higgsino component, increases annih. to W, Z, good DD rates
 - A-funnel: at high tan β , resonant s-ch. annih. via A, low DD rates

 χ^2 of fit to BR(b \rightarrow s γ), muon g-2, and relic density \bigcirc (dominated by relic density: avoid overclosure)

report

Direct Detection of WIMPs

CDMS/SuperCDMS/GEODM

Nuclear Recoil Discrimination

Challenges and Techniques

Challenges

Very **low energy** thresholds (~10 keV)

Large **exposures** (large active mass, long-term stability)

Stringent **background control** (cosmogenic, radioactive) Cleanliness Shielding (passive, active, deep site)

Discrimination power

Exponential spectrum

of $\langle E \rangle \sim 30 \text{ keV}$

nuclear recoils,

 $\ll 1/kg/day$

Challenges and Techniques

CDMS ZIP Detectors

Z-sensitive lonization- and Phononmediated detectors: Phonon signal measured using photolithographed superconducting phonon absorbers and transition-edge sensors. TES = transition edge sensor

1 μ m tungsten

TES

CDMS ZIP Detectors

Z-sensitive lonization- and Phononmediated detectors: Phonon signal measured using photolithographed superconducting phonon absorbers and transition-edge sensors. TES = transition edge sensor

380 µm x 60 µm

aluminum fins

(15%)

CDMS ZIP Detectors

Z-sensitive Ionization- and Phononmediated detectors: Phonon signal measured using photolithographed superconducting phonon absorbers and transition-edge sensors.

TES = transitionedge sensor

ZIP Detectors

Position Reconstruction

V. Mandic et al., NIM A **520**, 171 (2004)

CDMS/SuperCDMS/GEODM

Backgrounds in the CDMS II Experiment

' Photons (γ)

primarily Compton scattering of broad spectrum up to 2.5 MeV

small amount of photoelectric effect from low energy gammas

Neutrons (n)

n

radiogenic: arising from fission and (α,n) reactions in surrounding materials (cryostat, shield, cavern)

cosmogenic: created by spallation of nuclei in surrounding materials by high-energy cosmic ray muons.

Surface events (" β ")

radiogenic: electrons/photons emitted in low-energy beta decays of ²¹⁰Pb or other surface contaminants

photon-induced: interactions of photons or photo-ejected electrons in dead layer

Nuclear Recoil Discrimination in CDMS II

- Recoil energy
 - Phonon (acoustic vibrations, heat) measurements give full recoil energy
- Ionization yield
 - ionization/recoil energy strongly dependent on type of recoil (Lindhard)
- onization Yield [keV/keV] Excellent yield-based discrimination for photons
- Ionization dead layer:
 - low-energy electron singles (all surface ER): 0.2 misid
 - 1.2×10^{-3} of photons are surface single scatters, 0.2 of those misid'd (\Rightarrow 2 x 10⁻⁴)
 - also, radiogenic low-energy electrons from decay of ²¹⁰Pb on surface (radon daughter)

ZIP z Position Sensitivity

Surface events produce faster phonon pulses

 (test sample: nearest neighbor low-yield doubles
 (NNDs)): provides discrimination

I:I scale: 3 in. x I cm, I mm separation

0

. . .

ZIP z Position Sensitivity

Surface events produce faster phonon pulses

 (test sample: nearest neighbor low-yield doubles
 (NNDs)): provides discrimination

0

1:1 scale: 3 in. x 1 cm, 1 mm separation

CDMS II Background Discrimination

- Photon rejection
 - Bulk photon rate (bulk ER)
 = 300/kg/day.
 Single-scatters = 90/kg/day
 - Single-scatter surface ERs = 0.3/kg/day
 - Surface ER singles/ bulk ER singles = 4 x 10⁻³
 - Surface ER singles misid'd as nuclear recoils (NRs) /surface ER singles = 0.2 (ionization dead layer)
 - Phonon timing rejects surface events: 0.006 misid. prob.
 - Overall misid probability:
 I.4 x 10⁻⁶ for bulk ER,
 4.3 x 10⁻⁶ for single-scatter bulk ER
- Beta rejection
 - Comparable single-scatter ER rate of low-energy beta emitters (mainly ²¹⁰Pb)
 - 0.2 misid by yield and 0.006 misid by timing: **I x 10⁻³** misid probability

2002–2009: CDMS II at Soudan

The CDMS II/SuperCDMS/GEODM Collaborations

<u>Brown University</u> M.Attisha, R. J. Gaitskell, J.-P.Thompson

<u>Caltech</u> Z. Ahmed, J. Filippini, S. R. Golwala, D. Moore

Case Western Reserve University D. S. Akerib, C. N. Bailey, D. R. Grant, R. Hennings-Yeomans, M.R. Dragowsky

<u>Fermilab</u> D.A. Bauer, M.B. Crisler, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R. L. Schmitt, J.Yoo

<u>MIT</u> E. Figueroa-Feliciano, S. Hertel, K. McCarthy, S. Leman, P.Wikus

<u>NIST</u> K. Irwin

Queens University C. Crewdon, P. di Stefano, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau,

Santa Clara University B.A.Young

<u>SLAC National Accelerator Lab</u> M. Asai, A. Borgland, D. Brandt, W. Craddock, E. do Couto e Silva, G. Godfrey, J. Hasi, M. Kelsey, C. J. Kenney, P. C. Kim, R. Partridge, R. Resch, D. Wright

Southern Methodist University J. Cooley <u>Stanford University</u> P.L. Brink, B. Cabrera, M. Cherry, L. Novak, R.W. Ogburn, M. Pyle, M. Razeti, B. Shank, A. Tomada, S. Yellin, J. Yen

<u>St. Olaf College</u> A. Reisetter

Syracuse University R.W. Schnee, M. Kos, J. M. Kiveni

<u>Texas A&M</u> K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Santa Barbara R. Bunker, D. O. Caldwell, H. Nelson

<u>University of Colorado at Denver</u> B. Hines, M. E. Huber

<u>University of Florida</u> D. Balakishiyeva, T. Saab, B. Welliver

<u>University of Minnesota</u> J. Beaty, H. Chagani, P. Cushman, S. Fallows, M. Fritts, T. Hoffer, O. Kamaev, V. Mandic, X. Qiu, R. Radpour, A. Villano, J. Zhang

<u>University of Zurich</u> S.Arrenberg, T. Bruch, L. Baudis, M. Tarka

Office of Science

office of

high energy physics

CDMS II Soudan Installation

CDMS/SuperCDMS/GEODM

Five Tower Runs (2006-9)

30 ZIPs (5 Towers) installed:
4.75 kg Ge, I.1 kg Si

	T1	T2	T3	T4	T5
Z1 [G6	S14	S17	S12	G7
Z2	G11	S28	G25	G37	G36
Z3	G8	G13	S30	S10	S29
Z4	S3	\$25	G33	G35	G26
Z5	G9	G31	G32	G34	G39
Z6	S1	S26	G29	G38	G24

- Runs 123 124
 - Acquired: Oct06-Mar07, Apr07-Jul07
 - Exposure: ~400 kg-d (Ge "raw")

• Runs 125 - 128

- **THIS WORK**
- Acquired: Jul07-Jan08, Jan08-Apr08, May08-Aug08, Aug08-Sep08
- Exposure: ~600 kg-d (Ge "raw")

The Happy Analyzers

The Happy Analyzers

The Happy Analyzers

Blind Analysis

- Quarantined signal-like events during data reduction
 - Single-scatter
 - No activity in veto shield
 - Ionization yield near nuclear recoil band
- These events have no effect on the definition of our signal criteria
- Quarantine broken only when all cuts are finalized: "unblinding"
- Avoids statistical bias: cut on independent event distributions, not observed candidate events

