Natural SUSY Endures

Josh Ruderman UC Davis: Hidden-SUSY Nov. 8, 2011

Michele Papucci, JTR, Andreas Weiler, 1110.6926.

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of an enticing theory of sub-atomic physics.

• do the LHC results disfavor weak-scale SUSY?

• do the LHC results disfavor weak-scale SUSY?

-susy [HEFTI Workshops]

11/7/11 10:10 PM

• should we be building models that hide SUSY?

• do the LHC results disfavor weak-scale SUSY?

11/7/11 10:10 PM

-susy [HEFTI Workshops]

• should we be building models that hide SUSY?

I advocate that fine-tuning provides a framework for thinking about these questions.

the plan

I. bottom-up naturalness in SUSY

2. limits on natural SUSY

$$\frac{\text{tree-level:}}{2} = |\mu^2| + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right)$$

light Higgsinos

tree-level:

$$-\frac{m_Z^2}{2} = |\mu^2| + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right)$$
in this sector one-loop:

$$\delta m_{H_u}^2 \approx -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

$$\begin{aligned} \text{tree-level:} \\ -\frac{m_Z^2}{2} = |\mu^2| + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right) \\ \text{one-loop:} \\ \delta m_{H_u}^2 \approx -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2\right) \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \end{aligned}$$

light stops (and left-handed sbottom)

$$\begin{aligned} \text{tree-level:} \\ -\frac{m_Z^2}{2} = \boxed{|\mu^2|} + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right) \\ \text{one-loop:} \\ \delta m_{H_u}^2 \approx -\frac{3y_t^2}{8\pi^2} \underbrace{\left(m_{Q_3}^2 + m_{u_3}^2\right)}_{\text{mass}} + |A_t|^2 \right) \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \\ \text{two-loop:} \\ \delta m_{\tilde{t}}^2 = \frac{8\alpha_3}{3\pi} M_3^2 \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \end{aligned}$$

$$\begin{aligned} \text{tree-level:} \\ -\frac{m_Z^2}{2} = \boxed{|\mu^2|} + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right) \\ \text{one-loop:} \\ \delta m_{H_u}^2 \approx -\frac{3y_t^2}{8\pi^2} \underbrace{\left(m_{Q_3}^2 + m_{u_3}^2\right)}_{\text{(m_{Q_3}^2 + m_{u_3}^2)} + |A_t|^2\right) \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \\ \text{two-loop:} \\ \delta m_{\tilde{t}}^2 = \frac{8\alpha_3}{3\pi} \underbrace{M_3^2}_{\text{(m_{\tilde{t}}^2)}} \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \\ \end{bmatrix} \end{aligned}$$

how light should they be?

a general, bottom-up criterion:

there should not be large cancellations in the quadratic term of the higgs potential

consider the potential in the direction that gets a VEV:

$$V = m_H^2 |h|^2 + \frac{\lambda}{4} |h|^4 \qquad m_h^2 = \lambda v^2 = -2m_H^2$$
$$\Delta = \frac{2|\delta m_H^2|}{m_h^2}$$

how light should they be?

stops:

$$m_{\tilde{t}}^2 \lesssim \left(400 \text{ GeV}\right)^2 \frac{1}{1 + A_t^2/2m_{\tilde{t}}^2} \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{3}{\log\Lambda/m_{\tilde{t}}}\right) \left(\frac{m_h}{120 \text{ GeV}}\right)^2$$

Kitano and Nomura 2006.

higgsinos:

$$\mu^2 \lesssim (200 \text{ GeV})^2 \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{m_h}{120 \text{ GeV}}\right)$$

gluino:

$$M_3^2 \lesssim (900 \text{ GeV})^2 \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{3}{\log \Lambda/m_{\tilde{t}}}\right)^2 \left(\frac{m_h}{120 \text{ GeV}}\right)$$

There are now two logically different finetuning problems:

I. Little Hierarchy Problem

The LEP2 limit on the higgs mass, 114 GeV, leads to heavy stops in the MSSM, which leads to fine tuning of EWSB.

$$m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

Model Dependent!!! physics beyond the MSSM can raise higgs mass or
change higgs decays
 $m_h \gtrsim 114 \text{ GeV}$ $m_{\tilde{t}_1} \gtrsim 300 - 1000 \text{ GeV}$ 2.Direct LHC Limits

Direct collider limits lead to heavier stops/gluinos, which lead to fine tuning of EWSB, independently of the details of the higgs sector

flavor violating squark mass

- flavor degenerate squarks mean:
 TeV stop limits → few % fine tuning
- this motivates splitting the stops from the other squarks
- Splitting the stops with the RG (starting from a flavor symmetric boundary condition) is not sufficient!

$$\delta m_{H_u}^2 \simeq 3\left(m_{Q_3}^2 - m_{Q_{1,2}}^2\right) \simeq \frac{3}{2}\left(m_{u_3}^2 - m_{u_{1,2}}^2\right)$$

• Really need a flavor-violating boundary condition, which can be MFV,

$$m_{u_3}^2 = c_1 \mathbb{I} + c_2 Y_u Y_u^{\dagger} + \dots$$

a natural spectrum

I/fb searches that are relevant for natural susy:

	ATLAS			CMS		
	channel	$\mathcal{L} \text{ [fb}^{-1} \text{]}$	ref.	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.
jets + $\not\!\!\!E_T$	2-4 jets	1.04	[1]	α_T	1.14	[11]
	6-8 jets	1.34	[2]	H_T, H_T	1.1	[12]
b -jets $(+ l's + \not\!\!E_T)$	1b, 2b	0.83	[3]	$m_{T2} (+b)$	1.1	[13]
	b+1l	1.03	[4]	1b, 2b	1.1	[14]
				$b'b' \rightarrow b + l^{\pm}l^{\pm}, 3l$	1.14	[15]
				$t't' \to 2b + l^+l^-$	1.14	[16]
multilepton $(+ \not\!\!E_T)$	1 l	1.04	[5]	1l	1.1	[17]
	$\mu^{\pm}\mu^{\pm}$	1.6	[6]	SS dilepton	0.98	[18]
	$t\bar{t} \rightarrow 2l$	1.04	[7]	OS dilepton	0.98	[19]
	$t\bar{t} \rightarrow 1l$	1.04	[8]	$Z \rightarrow l^+ l^-$	0.98	[20]
	4l	1.02	[9]	$3l, 4l + \not\!\!E_T$	2.1	[21]
	2l	1.04	[10]	3l, 4l	2.1	[22]

we simulated all of these searches (minus the red ones), and checked how they constrain natural SUSY

we calibrated all of the searches by comparing with the signal efficiencies published by the experimentalists

and now for the results...

stop v higgsino

(lefty) stop v bino

what about the MSSM?

note that the fine-tuning is proportional to the (squared) distance from the origin

$$\delta m_{H_u}^2 \propto m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2$$

gluinos decaying to stops and sbottom

take away points

- higgsinos, stops, and the gluino should be light and the rest of the spectrum doesn't matter
- fine tuning points towards light stops split from the other squarks
- We find limits that are still consistent with ~1/3 fine tuning. $m \sim > 100 \text{ GeV}$

 $m_{\tilde{H}} \gtrsim 100 \text{ GeV}$ $m_{\tilde{t}} \gtrsim 300 \text{ GeV}$ $m_{\tilde{g}} \gtrsim 700 \text{ GeV}$

• don't worry, be happy.

(the most interesting parameter space lies just ahead, but is challenging)

backup slides

split/mixed stops

$$\begin{pmatrix} m_{Q_3}^2 + m_t^2 + t_L m_Z & m_t X_t \\ m_t X_t & m_{U_3}^2 + m_t^2 + t_R m_Z^2 \end{pmatrix}$$

split/mixed stops

split/mixed stops

II the other squarks? \tilde{B}

the other squarks?

squished

unify

stop reach

gluino/stop reach

