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Introduction—telltale signs of SUSY

Suppose that new physics beyond the Standard Model (SM) is discovered

at the LHC. How will we know it is SUSY (taking into account that SUSY

is a broken symmetry)?

• Every SM particle has a superpartner differing in spin by half a unit.

– You may only discover a subset of all the superpartners

– Spin measurements may be difficult in some cases

• The total number of bosonic and fermionic degrees of freedom must be

equal

– It is very unlikely that all MSSM degrees of freedom can be accessed at the LHC

Perhaps the “gluino” that was discovered is an ordinary color octet fermion.

Perhaps the “squark” is an ordinary color triplet scalar.



Example: models of weak-scale supersymmetry and universal extra dimensions (UED) with

R−1 ∼ 1 TeV both possess a spectrum of new particles (both colored and uncolored) that

are accessible to the LHC.∗
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∗For techniques to discriminate between these models, see e.g., A. Datta, K. Kong and K.T. Matchev,

Phys. Rev. D72, 096006 (2005); J. M. Smillie and B.R. Webber, JHEP 0510, 069 (2005).



A smoking gun for SUSY—Yukawa couplings related to gauge couplings

Example: gluino and squark couplings

gc

egb

ega

−gsfabc γµ gc

eqj

eqi
−igsT cij(pi + pj)

µ

These vertices are governed solely by QCD. In contrast, the q̃qg̃ coupling is

a scalar–scalar-fermion (Yukawa) coupling. In general, Yukawa and gauge

interactions are unrelated. But, here it is the underlying supersymmetry

that relates them.

eqLk
ega

qj

− igs√
2
T ajk (1 + γ5) eqRk

ega

qj
igs√

2
T ajk (1 − γ5)

The Yukawa couplings are proportional to the gauge coupling gs. This is a

smoking gun for supersymmetry.



SUSY coupling relations

In a supersymmetric field theory, the tree-level supersymmetric gaugino–

fermion–sfermion interactions originate from the Kähler term:

LK =

∫
d4θΦ†

i(e
2gV )ijΦj ∋ i

√
2ga(ϕ

∗
iT

a
ijψjλ

a − λ̄aψ̄iT
a
ijϕj) ,

where V = (Aaµ, λ
a,Da) is a gauge vector superfield and the superfields

Φi = (ϕi, ψi, Fi) include the Higgs, quark and lepton superfields. Thus, the

gaugino–fermion–sfermion Yukawa couplings are related to gauge couplings.

Likewise, the tree-level higgsino–fermion–sfermion interactions originate

from the superpotential:

LW =

∫
d2θW (Φ) + h.c. ∋ −1

2

∑

i,j

d2W (ϕ)

dϕidϕj
[ψiψj + h.c.] ,

where W (Φ) ∋ hijkΦiΦjΦk. This relates the Higgs–fermion–fermion and

higgsino–fermion–sfermion couplings to hijk.



Testing SUSY coupling relations at colliders

To verify coupling relations requires a precision SUSY program. This is not

a program for early LHC running.

Let us imagine that after years of LHC running, a spectrum of new particles

is discovered, which is suggestive of SUSY. We wish to experimentally

confirm the SUSY interpretation by verifying the SUSY coupling relations.

This is a program for the high-luminosity running of the LHC and the

ILC/CLIC in the following decade.

At the LHC, one might first try to verify the relation of the q̃qg̃ coupling to

the strong gauge coupling. A study by Freitas, Skands, Spria and Zerwas

[JHEP 0707, 025 (2007)] demonstrated the feasibility of this measurement,

although with some SUSY model dependence and reliance on ILC data.

Instead, we propose to go after the SUSY coupling relations involving the

lightest supersymmetric particle (LSP), assumed to be the χ̃0
1.



Expectations for the LSP

We assume R-parity-conserving SUSY, in which case the LSP is stable. A

natural candidate for the LSP is χ̃0
1. In general,

χ̃0
1 = N11B̃ +N12W̃

3 +N13H̃
0
d +N14H̃

0
u .

The neutralino mass matrix is governed by gaugino mass parameters M1

and M2 and a supersymmetric higgsino mass parameter µ.

1. mSUGRA models typically give mZ <∼ |M1| ≃ 1
2|M2| ≪ |µ|, which yields

=⇒ χ̃0
1 ≃ B̃ (the bino)

2. In anomaly mediation, Mi ≃
big

2
i

16π2
m3/2, where m3/2 is the gravitino

mass and the bi are the coefficients of the MSSM gauge beta-functions

corresponding to the corresponding U(1), SU(2), and SU(3) gauge groups:

(b1, b2, b3) = (33
5 , 1,−3). Hence, M1 ≃ 2.8M2. Assuming M2 ≪ |µ|, then

=⇒ χ̃0
1 ≃ W̃ 3 (the neutral wino)

In this case, {χ̃0
1 , χ̃

±
1 } comprise a nearly mass-degenerate SU(2)L triplet.



The neutralino mass matrix

Defining the two-component fermion fields, ψ = (−iλ′ , −iλ3 , ψ1
Hd
, ψ2

Hu
),

Lmass = −1
2ψi(MN)ijψj + h.c. ,

where

MN =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0



.

The physical neutralino masses are identified by:

N∗MNN
−1 = diag(mχ̃1 , mχ̃2 , mχ̃3 , mχ̃4) .

In the limit where M1, M2, and µ are larger than mZ, then the mass

eigenstates are approximately B̃ (bino), W̃ 3 (neutral wino), H̃0
d and H̃0

u

(neutral higgsinos), with corresponding masses ∼ |M1|, |M2|, |µ| and |µ|.



One cannot rule the other possibilities, which are less common in the

literature:

3. Models in which mZ <∼ |µ| ≪M1,M2.

=⇒ χ̃0
1 ≃ H̃ (the higgsino)

4. Models in which there is significant mixing among gauginos and higgsinos

in the χ̃0
1 wave function.

We adopt a strategy that focuses on the possibility that χ̃0
1 is nearly pure

bino or pure wino. Ultimately, analyses of the type that will be presented

here can be used to confirm or rule out such an assumption.

Note: If χ̃0
1 is a major component of the dark matter, then identifying its

gaugino and higgsino content will be especially important. Determining the

content of the LSP will be a byproduct of our analysis.



A proposal to measure the q̃qχ̃0
1 coupling using

monojet events at the LHC

The production process process involves the q̃qχ̃0
1 coupling, λ. If the χ̃0

1 is

dominantly gaugino-like, then this coupling is directly related to the gauge

coupling due to SUSY.
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λ
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g

If the squark is lighter than the gluino, the squark will often decay directly

to the LSP, resulting in a quark jet plus missing energy, i.e. a monojet event.
q
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1
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The Jacobian peak in the pT distribution

Consider the 2 → 3 partonic scattering process,

q + g → eq + eχ0
1 , followed by eq → q + eχ0

1 ,

The quarks and gluon are treated as massless. The squark and neutralino masses are

denoted by M and m, respectively. In the center-of-mass frame, the four-momenta of the

initial quark and gluon and the final state quark jet are denoted by pa, pb and p1, where

pa = 1
2

√
s(1 ; 0 , 0 , 1) , pb = 1

2

√
s(1 ; 0 , 0 , −1) ,

p1 = E1(1 ; sin θ , 0 , cos θ) ,

and
√
s is the partonic center-of-mass energy. The transverse momentum of the final

state quark jet is pT = E1 sin θ. The kinematical limits of pT and E1 are:

for 0 ≤ pT ≤ E−
1 , E−

1 ≤ E1 ≤ E+
1 ,

for E−
1 ≤ pT ≤ E+

1 , pT ≤ E1 ≤ E+
1 ,

where

E±
1 ≡ M2 −m2

4M2
√
s

»
s+M2 −m2 ±

q
(s +M2 −m2)2 − 4sM2

–
.



We will also make use of the kinematic invariants,

t1 ≡ (pa−p1)
2 = −

√
s

»
E1 −

q
E2

1 − p2
T

–
, s2 ≡ (pa+pb−p1)

2 = s−2
√
sE1 .

The pT distribution of the quark jet is then given by:

dσ

dpT
=

BpT

8πξs3/2

Z Emax

Emin

dE1

E1

q
E2

1 − p2
T

|C1(s, t1)|2

where ξ ≡ 1 −m2/M2, C1 is the matrix element for qg → eqeχ0
1, B ≡ BR(eq → qeχ0

1)

and the limits of integration are given by Emax ≡ E+
1 and

Emin =

8
<
:
E−

1 for 0 ≤ pT ≤ E−
1 ,

pT for E−
1 ≤ pT ≤ E+

1 .

In obtaining the above result, we made use of dt1ds2 = s(E2
1 − p2

T)
−1/2dp2

TdE1. This

Jacobian factor is responsible for the peak in the pT distribution at:

(pT )peak = E−
1 =

ξ

4
√
s

»
s+M2 −m2 −

q
(s+M2 −m2)2 − 4sM2

–

which arises at the boundary where Emin switches from E−
1 to pT .



For C1 = 1 (pure phase space), the integral over E1 can be carried out explicitly,

dσ

dpT
=

B

8πξs3/2

2
64tan

−1

0
B@

q
[E+

1 ]2 − p2
T

pT

1
CA− Θ(E

−
1 − pT) tan

−1

0
B@

q
[E−

1 ]2 − p2
T

pT

1
CA

3
75 .

Employing the actual qg → eqeχ0
1 matrix element yields only a small correction to the shape

of the pT distribution. Note that (pT)max = E+
1 , so that xmax = 2(pT )max/

√
s < 1.
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The location of the Jacobian peak depends on the partonic center-of-mass energy. But,

when computing the pT distribution of pp → eqeχ0
1 → qeχ0

1eχ0
1, one must integrate over

the parton distribution functions. In the convolution, partonic center-of-mass energies

close to the energy threshold for the partonic process provide the dominant contribution

to the production of the final state. The threshold corresponds to
√
s = M +m, which

yields

E
−
1 = E

+
1 =

M2 −m2

2M
.

Thus, close to threshold,

(pT)peak = E−
1 ≃ M2 −m2

2M
= 1

2ξM ,

which is independent of the partonic center-of-mass energy.

As
√
s is increased above the threshold energy, the value of E−

1 decreases relative to

the above estimate. Thus, we expect the actual peak in the transverse momentum

distribution of the hadronic scattering process (or equivalently in the missing transverse

energy distribution) to be somewhat less than the above result.



The signal processes—further details

• For a bino LSP: g+u→ χ̃0
1+ũR, g+d→ χ̃0

1+ d̃R followed by ũR → uχ̃0
1

or d̃R → dχ̃0
1. The charge-conjugated processes are also included. Here,

λ = g′, the U(1)Y gauge coupling.

– Since q̃R is an SU(2)L-singlet, BR(q̃R → qχ̃0
1) ≃ 100%.

• For a wino LSP: g+ u→ χ̃0
1 + ũL, g+ d→ χ̃0

1 + d̃L, g+ u→ χ̃+
1 + d̃L,

g + d → χ̃−
1 + ũL, where ũL → uχ̃0

1/dχ̃
+
1 , d̃L → dχ̃0

1/uχ̃
−
1 and χ̃+

1 →
S+ χ̃0

1, where S is either a very soft lepton or QCD radiation too soft to

be identified as a jet. The charge-conjugated processes are also included.

Here, λ = g, the SU(2)L gauge coupling.

– The mass splitting between χ̃+
1 and χ̃0

1 is ∼ 200 MeV, so the dominant

decay χ̃+
1 → χ̃0

1π
+ typically results in an unmeasurable soft pion.

– Since q̃L is an SU(2)L-triplet, there is a preference for the direct decay

of q̃L → qχ̃0
1.



Significant SM and SUSY backgrounds

• Z(→ ν ν̄)+jet. This background can be ascertained from the Z(→ ℓ+ℓ−)+jet

signal. In principle, this background can be subtracted off from the monojet sample.

• W (→ τν)+jet, where the W decays into a tau and a neutrino, and the tau is either

not detected, or lost in the jet.

• W (→ e/µ ν)+jet, where the W decays into an electron or a muon and a neutrino

and the electron/muon is undetected or lost inside the jet.

• QCD jet production with mismeasurement of the energy deposited in the detector. One

could produce di-jets, for instance, and one of the jets could be lost in the detector (or

its energy mismeasured so that it fluctuate below the transverse momentum required

to identify the jet).

• eqeq production, where the decay products of the two squarks merge into a single jet.

• eχ0
1eχ0

1 production plus an initial state radiated (ISR) jet.

• In the case of a wino LSP, eχ+
1 eχ

−
1 production plus an ISR jet will yield monojet events,

since eχ+
1 → eχ0

1 + soft pion.



Simulation of signal and backgrounds

The following tools have been employed:

• Herwig++2.4.2

– signal and backgrounds at tree-level have been simulated

– pair production and the two and three body decay of all SUSY particles

included

• Herwig++ output analyzed using HepMC-2.04.02 and ROOT

• Jets were reconstructed using fastjet-2.4.1

– Jets are defined with pT > 30 GeV, and the anti-kt jet algorithm with

R ≡
√

(∆η)2 + (∆φ)2 = 0.7 was used.

• SUSY spectrum determined with SOFTSUSY3.0.13 and applied to a

benchmark bino-LSP and wino-LSP scenarios



Wino-LSP case study

We examine the benchmark mAMSB scenario with:

M3/2 = 33 TeV, M0 = 200 GeV, tan β = 10, sgn(µ) = +1 ,

which gives σ(pp → eqReχ0
1) = 470 fb, λ = 0.99g and the following SUSY spectrum:

sparticle mass [GeV] sparticle mass [GeV]

χ̃0
1 106.5 χ̃0

4 593

χ̃+
1 106.7 χ̃+

2 594

τ̃1 113 b̃1 634

ν̃τ 135 t̃2 688

ν̃e/ν̃µ 138 ũL/c̃L 722

ẽR/µ̃R 150 b̃2 723

ẽL/µ̃L 159 d̃L/s̃L 726

τ̃2 179 ũR/c̃R 726

χ̃0
2 298 d̃R/s̃R 732

t̃1 521 g̃ 745

χ̃0
3 584



The cuts employed in our analysis are summarized below, based on an integrated luminosity

of 100 fb−1 at
√
s = 14 TeV.

cut all SM SUSY bkg. signal S/
√
B (S/

√
7B)

pT (jet1) ,p/T > 100 GeV 3.81 × 107 1.04 × 106 44 100 -

lepton veto 2.52 × 107 621 000 43 800 -

pT (jet2) < 50 GeV 1.73 × 107 111 000 16 200 3.9 (1.5)

p/T > 300 GeV 171 000 11 000 8 390 20 (7.7)

m(jet1) < 80 GeV 135 000 6 020 6 370 17 (6.5)

tau veto 119 000 5 840 6 370 18 (7.0)

b-jet veto 115 000 5 290 6 320 19 (7.0)

The lepton veto removes events with an isolated electron or muon with pT > 5 GeV and |η| < 2.5. The isolation criterion

demands ≤ 10 GeV of additional energy in a cone of radius ∆R = 0.2. The conservative statistical estimator S/
√

7B should

be used (according to L. Vacavant and I. Hinchliffe) if statistical fluctuations are dominated by the Z(→ ℓ+ℓ−)+ jet calibration

sample used to subtract the Z(→ νν̄) + jet background.

Note that we need a good signal to SUSY background if we wish to measure the eqqeχ0
1

coupling λ to good precision. This is the main reason for the cut on m(jet1). The τ and

b-jet vetoes are not used in our final analysis.
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Accuracy in the determination of the q̃qχ̃0
1 coupling λ in the wino case study

error ∆σmono/σmono ∆λ/λ

luminosity 3% 1.5%

PDF uncertainty 17% 8.3%

NLO corrections 18% 9%

sparticle mass ∆m̃ = 10 GeV 7.3% 3.7%

statistics (optimistic) 5.8% 2.9%

statistics (conservative) 15% 7.7%

total (optimistic) 26% 13%

total (conservative) 30% 15%

Relative errors for the signal monojet cross section (second column) and the eqLqeχ0
1 coupling (third column)

from different sources (first column). The numbers are for the mAMSB benchmark scenario.



An optimal choice of cuts depends on the squark and neutralino mass.

We search in steps of 10 GeV for the pT and m(jet1) cuts that provide

the highest S/
√
S +B. The best significance is near the Jacobian peak.

Applying these optimal cuts yields:

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 450  600  750  900  1050 1200
 100

 150

 200

 250

 300

 350

 400

∆
λ
/
λ

mũL
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Bino-LSP case study

We examine a benchmark light mSUGRA scenario for the bino-LSP case study with:

M0 = 220 GeV, M1/2 = 180 GeV, A0 = −500 GeV, tan β = 20, sgn(µ) = +1 ,

which gives σ(pp → eqReχ0
1) = 520 fb, λ = 0.99g′ and the following SUSY spectrum:

sparticle mass [GeV] sparticle mass [GeV]

χ̃0
1 70.2 χ̃0

4 365

χ̃+
1 132 χ̃+

2 370

χ̃0
2 133 b̃1 378

τ̃1 189 b̃2 443

t̃1 226 ũR/c̃R 454

ν̃τ 230 d̃R/s̃R 455

ẽR/µ̃R 234 g̃ 456

ν̃e/ν̃µ 242 ũL/c̃L 463

ẽL/µ̃L 255 d̃L/s̃L 470

τ̃2 259 t̃2 477

χ̃0
3 359



Accuracy in the determination of the q̃qχ̃0
1 coupling λ in the bino case study

error ∆σmono/σmono ∆λ/λ

luminosity 3.0% 1.5%

PDF uncertainty 17% 8.3%

NLO corrections 16% 8.0%

sparticle mass ∆m̃ = 10 GeV 11% 5.6%

statistics (optimistic) 8.6% 4.3%

statistics (conservative) 23% 11%

total (optimistic) 27% 14%

total (conservative) 35% 17%

Relative errors for the signal monojet cross section (second column) and the χ̃0
1eqRq coupling λ (third

column) from different sources (first column). The numbers are for the light mSUGRA benchmark scenario.

In isolating the signal, the second jet veto is now tighter, with pT (jet2) < 30 GeV. The p/T cut is lowered

to 180 GeV and the m(jet1) cut is lowered to 70 GeV to optimize for the lighter SUSY spectrum.



Summary of the Wino-LSP and Bino-LSP case studies

• For a wino-LSP, one can test the q̃qχ̃0
1 coupling relation to a precision

of ∼ 10%—20% at the LHC with
√
s = 14 TeV and 100 fb−1 of data

if squark masses are below 1 TeV, over a significant portion of the

wino-LSP parameter space.

• For a bino-LSP, precisions of ∼ 10%—20% are achievable if squark

masses are below 500 GeV and the LSP mass is below 100 GeV.

The more favorable results for the wino-LSP are a consequence of

a significantly larger σ(qg → q̃χ̃0
1), which follows from the fact that

g2/g′ 2 ≃ 3. This means that it should also be possible to employ the

monojet signal to distinguish between a wino, bino and higgsino LSP. In the

case of a higgsino LSP, qg → q̃χ̃0
1 is highly suppressed and no corresponding

contribution to the monojet signal will be observed.



Precision studies of SUSY coupling relations

Recall that the tree-level supersymmetric gaugino–fermion–sfermion

interactions originate from the Kähler term:

LK =

∫
d4θΦ†

i(e
2gV )ijΦj ∋ i

√
2ga(φ

∗
iT

a
ijψjλ

a − λ̄aψ̄iT
a
ijφj) .

Let us examine all possible dimension-four gauge-invariant operators in the

gaugino–higgsino–Higgs boson sector that violate supersymmetry. One class

of operators includes:

igu√
2
λaτaijψ

j
Hu
H∗i
u +

igd√
2
λaτaijψ

j
Hd
H∗i
d +

ig′u√
2
λ′ψiHuH

∗i
u − ig′d√

2
λ′ψiHdH

∗i
d +h.c. ,

where the coupling gu, gd, g
′
u and g′d deviate from their supersymmetric

values given by the SU(2) and U(1)Y gauge couplings, g and g′, respectively.

Such effects are generated by one-loop corrections and have been studied

in detail by Katz et al. and by Kiyoura et al.



Wrong Higgs gaugino–higgsino operators

Here, we focus on a second class of supersymmetric violating operators:

igk1λ
a
τ
a
ijψ

j
Hu
ǫkiH

k
d , ig

′
k2λ

′
ψ
k
Hu
ǫkiH

i
d ,

igk3λ
aτaijψ

j
Hd
ǫkiH

k
u , ig′k4λ

′ψiHd
ǫkiH

k
u .

Integrating out a subset of heavy MSSM fields

Graphs (a), (b) and graph (c) are suppressed by O(mtmb/M
2
SUSY) and O(m2

b/M
2
q̃ ),

respectively, and hence decouple when Mq̃ ≫ Mχ̃,MH,mZ.

Hiu

ψQ

ψU
ψD

ψQ
++

eQi∗ eQiλa ψHd

(a)

Hiu

eQi∗
eQi

eQi
eU

×
ψQ ψDλa ψHd

(b)

Hiu

eQi∗
eD∗

eQi
eQi∗

×
ψQ ψDλa ψHd

(c)
One-loop diagrams contributing to the wrong-Higgs gaugino operators. The cross (×) indicates the two-component fermion

propagator that is proportional to the corresponding Dirac mass. In (b) and (c) the solid dot indicates an insertion of the Higgs

vacuum expectation value (vev). Field labels correspond to annihilation at each vertex of the triangle. Replacing the Higgs vev by

the appropriate Higgs field, these diagrams actually correspond to dimension-six operators with the expected decoupling behavior.



Implications for chargino observables

After the neutral Higgs bosons acquire their vacuum expectation values,

〈H0
u〉 = vu/

√
2 and 〈H0

d〉 = vd/
√

2, the quadratic terms of the effective

gaugino Lagrangian are given by:

Lmass =
iguvu

2
λaτa2jψ

j
Hu

+
igdvd

2
λaτa1jψ

j
Hd

+
ig′uvu

2
λ′ψ2

Hu −
ig′dvd

2
λ′ψ1

Hd

−Mλaλa −M ′λ′λ′ − µǫijψ
i
Huψ

j
Hd

+
ik1vd√

2
λaτa2jψ

j
Hu

− ik2vd√
2
λ′ψ2

Hu −
ik3vu√

2
λaτa1jψ

j
Hd

− ik4vu√
2
λ′ψ1

Hd
+ h.c.

The parameters appearing above are effective parameters below the TeV-

scale. For example, gu = g + δgu, gd = g + δgd, g
′
u = g′ + δg′u, and

g′d = g′ + δg′d, where the δg′s include threshold and renormalization group

effects from SUSY breaking below the fundamental SUSY-breaking scale.



Isolating the terms that contribute to the chargino matrix, we introduce

ψ+
i =

(
−iλ+

ψ1
Hu

)
, ψ−

i =

(
−iλ−
ψ2
Hd

)
,

where λ± = 1√
2
(λ1 ∓ iλ2). Then, the chargino mass terms are given by:

Lmass = −1

2

(
ψ+ ψ−

)( 0 (Xeff)T

Xeff 0

)(
ψ+

ψ−

)
+ h.c. ,

where

Xeff =

0
BBBB@

M (g + δgu)
vu√
2

 
1 −

√
2k1 cot β

g + δgu

!

(g + δgd)
vd√
2

 
1 +

√
2k3 tan β

g + δgd

!
µ

1
CCCCA

with vu ≡ v sinβ and vd ≡ v cosβ.

We wish to identify the leading effect at large tanβ. We can neglect the

effects of δgd as these are one-loop effects with no tan β-enhancements.



We shall write:

Xeff
12 =

√
2mW sinβ (1 + δ12) , Xeff

21 =
√

2mW cosβ (1 + δ21) .

In the large tanβ limit, δ21 is tanβ-enhanced, and provides parametrically

the largest of the one-loop corrections to Xeff.

δ21 ≃
√

2k3 tanβ

g
.

In the MSSM, k3 is generically suppressed by a loop factor and a decoupling

factor,

k3 ∼ g2

16π2
· m

2
Z

M2
q̃

,

In models of gauge-mediated SUSY-breaking, additional loop contributions

to the wrong-Higgs couplings from light messengers with O(1) couplings

can enhance both suppression factors. The correction to the supersymmetric

relation, X21 = gv cosβ/
√

2 can be as large as ∼ 50% for tan β = 50.



Extracting δ21 from precision chargino data

Given the effective chargino matrix Xeff, the chargino masses and mixing

angles are obtained from:

U∗XV −1 = MD ≡ diag(mχ+
1
,mχ+

2
) ,

for some suitably chosen unitary matrices U and V , where the elements of

the diagonal matrix MD are real and non-negative.

Let Φµ be the relative phase between µ and M (and assume the phases

of X12 and X21 are negligible). Then, the chargino squared-masses and

mixing angles θL and θR are:†

m2
χ±

1,2
= 1

2

(
M2 + |µ|2 +X2

12 +X2
21 ∓ ∆

)
,

cos 2θR,L = ∆−1
[
|µ|2 −M2 ± (X2

12 −X2
21)
]
,

†One can also derive equations for the physical phases that appear in U and V , but these are not needed

here.



where the quantity ∆ is defined by:

∆ ≡
[
(M2 − |µ|2 −X2

12 +X2
21)

2 + 4(M2X2
12 + |µ|2X2

21 + 2M |µ|X12X21 cosΦµ)
]1/2

.

Taking δ12 and δ21 small, and working to first order in these quantities, one

obtains two equations for the two unknown δ’s. We find:

δ21 =
2s2βf

1/2(∆ − f1/2) − 1
2h
{
c2β + 1

4m2
W

[
(cos 2θR − cos 2θL)(m2

χ±
2

−m2
χ±

1

)
]}

hc2β + gs2β
,

where f , g and h are complicated (but known) expressions that depend

on the two chargino masses, mW , tanβ, cos 2θL,R, and cosΦµ. These

quantities can in principle be determined at the ILC using precision chargino

data [cf. S.Y. Choi et al., EPJC 14 (2000) 535], using measurements of the

total production cross-sections for e+e− → χ̃±
i χ̃

∓
j and asymmetries with

polarized beams.



For the morbidly curious

It is convenient to define:

C
+
RL ≡ −(cos 2θR + cos 2θL) , C

−
RL ≡ cos 2θR − cos 2θL .

Then,
f = (1

2C
+
RL∆ + 2m2

Wc2β)
2 + 4m2

W (m2

χ±2
+m2

χ±1
− 2m2

W ) − 2m2
WC

+
RL∆c2β

+4m
2
WΓs2β cos Φ ,

g = 2m2
Wc

2
β

»
4(m2

χ±2
+m2

χ±1
) + 4m2

Wc2β − 16m2
W − C+

RL∆ + 4Γ tan β cosΦ

−8m2
W

Γ
(m2

χ±2
+m2

χ±1
− 2m2

W )s2β cos Φ

–
,

h = 2m2
Ws

2
β

»
4(m2

χ±2
+m2

χ±1
) − 4m2

Wc2β − 16m2
W + C+

RL∆ + 4Γ tan β cos Φ

−8m2
W

Γ
(m2

χ±2
+m2

χ±1
− 2m2

W )s2β cos Φ

–
,

where

Γ ≡
»
(m

2

χ±1
+m

2

χ±2
− 2m

2
W )

2 − 1
4(C

+
RL∆)

2

–1/2

.



Conclusions and future directions

• To confirm a SUSY interpretation of new physics, one must identify experimental

observables that are sensitive to the underlying SUSY structure.

• The relation of gaugino–particle–sparticle couplings to gauge couplings is a smoking

gun for SUSY.

• Monojet events at the LHC arising from eqeχ0
1 production can probe gaugino–quark–

squark couplings with an accuracy approaching O(10%) with 100 fb−1 of data at
√
s = 14 TeV over a significant portion of the MSSM parameter space, and can

provide evidence in favor of a wino-like or bino-like LSP.

• In the future, we will examine multiple SUSY observables that are sensitive to the

gaugino–particle–sparticle coupling. A global fit to these observables can enhance the

precision of the coupling determinations, while providing stronger evidence in favor of

the underlying SUSY structure.

• Ultimately, a precision program for SUSY requires an ILC and/or CLIC. Precision

measurements of gaugino–particle–sparticle couplings can reveal deviations from the

tree-level SUSY predictions, which can provide critical clues to the fundamental nature

of SUSY-breaking.


