Relatively Heavy Higgs Boson From More Generic Gauge Mediation

Jason L. Evans

¹University of Tokyo, IPMU

JLE, Ibe, Yanagida, arXiv:1108.3437

Outline

Gauge Mediation

More Generic Gauge Mediation

Lightest Higgs Boson Mass

The State of Things

The Standard Model

- Fermilab has discovered the top
 - Completing the third quark family
 - Along time ago (1995) !!!!!!
- Flavor constraints consistent with CKM matrix
 - Cutoff scale for new physics in $K \bar{K}$ mixing \gtrsim 1000 TeV

- The State of Things

The Standard Model

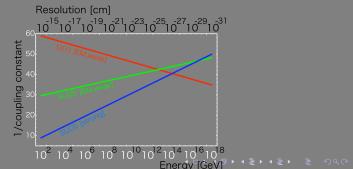
- Fermilab has discovered the top
 - Completing the third quark family
 - Along time ago (1995) !!!!!!
- Flavor constraints consistent with CKM matrix
 - ▶ Cutoff scale for new physics in $K \bar{K}$ mixing \gtrsim 1000 TeV
- SM can easily accommodate cosmology
- Neutrino masses and mixing are also possible
- LHC has pushed the scale of new physics to be quite high

Is it time to give up?

The State of Things

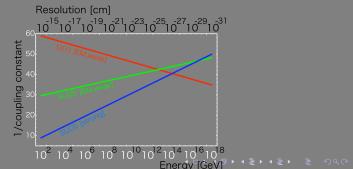
The Standard Model

- Fermilab has discovered the top
 - Completing the third quark family
 - Along time ago (1995) !!!!!!
- Flavor constraints consistent with CKM matrix
 - ▶ Cutoff scale for new physics in $K \bar{K}$ mixing \gtrsim 1000 TeV
- SM can easily accommodate cosmology
- Neutrino masses and mixing are also possible
- LHC has pushed the scale of new physics to be quite high


Is it time to give up?

Nature Tells Us There is More

- Additional Matter
 - Dark Matter: Add new matter
 - Right handed neutrino: simple Dirac neutrinos will due
- More complicated gauge symmetries
 - Gauge coupling unification
 - Additional matter needed (of course)

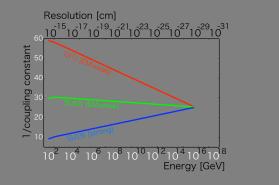

Nature Tells Us There is More

- Additional Matter
 - Dark Matter: Add new matter
 - Right handed neutrino: simple Dirac neutrinos will due
- More complicated gauge symmetries
 - Gauge coupling unification
 - Additional matter needed (of course)

Nature Tells Us There is More

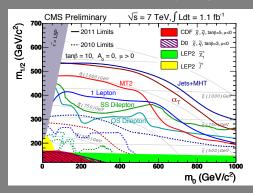
- Additional Matter
 - Dark Matter: Add new matter
 - Right handed neutrino: simple Dirac neutrinos will due
- More complicated gauge symmetries
 - Gauge coupling unification
 - Additional matter needed (of course)

Higgs Boson and Grand Unification


- SM gauge couplings are suggestive, but not definitive
- If we take gauge coupling unification seriously in SM
 - Higgs boson mass is fine tuned to many orders of magnitude

$$m_{H}^{2}=m_{0}^{2}+\mathcal{O}(M_{unif}^{2}/16/\pi^{2})$$

- Additional matter content needed for unification
- If a scalar, can exasperate the hierarchy problem.
- My criteria for Interesting Unification
 - Gauge coupling unification, of course
 - Unification discernable at the LHC
 - Additional matter justified


Grand Unification Suggestive of SUSY

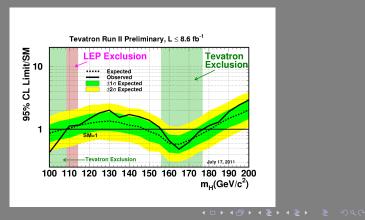
- The beauty of SUSY Grand unification
 - Matter content justified by symmetry
 - Necessary matter visible at the LHC
 - Shields the SM Higgs from GUT scale physics

It Was the Best of Times, It Was the Worst of Times

Best of Times: LHC is running collecting data
 Worst of Times: LHC hasn't seen anything

L The State of Things

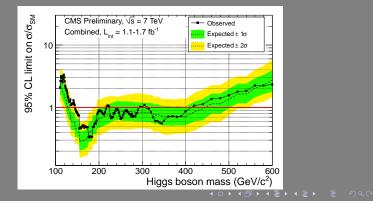
What is the True MSSM Killer?


- Higgs mass light even for M_{SUSY} = 10¹⁶ GeV
- Additional matter does not help much
 - ▶ 5,5 couple to H_d , do not enhance lightest Higgs
 - Adding a singlet, possible to enhance Higgs mass
 - ▶ 10, $\overline{10}$ couple to H_u , does enhance lightest Higgs
 - Can only add one set of 10, 10
- These only contribute logarithmically to Higgs mass
- ► SUGRA additional 10, 10 give max m_H ~ 140 GeV (Asano, Moroi, Yanagida ... arXiv:1108.2402v1)

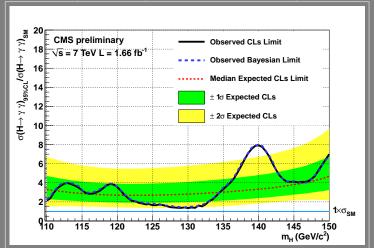
What is the True MSSM Killer?

- Higgs mass light even for $M_{SUSY} = 10^{16}$ GeV
- Additional matter does not help much
 - ▶ 5,5 couple to H_d , do not enhance lightest Higgs
 - Adding a singlet, possible to enhance Higgs mass
 - ▶ 10, $\overline{10}$ couple to H_u , does enhance lightest Higgs
 - Can only add one set of 10, 10
- These only contribute logarithmically to Higgs mass
- SUGRA additional 10, 10 give max m_H ~ 140 GeV (Asano, Moroi, Yanagida ... arXiv:1108.2402v1)

Higgs Searches: Pre LHC

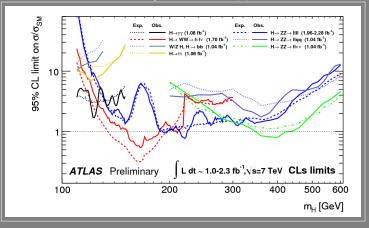

- ▶ Pre LHC Higgs: Rougly $m_H > 114$ GeV and $m_H \leq 600$ GeV
- Pre LHC Supersymmetric Higgs: $m_H \lesssim 135$ GeV

Higgs Searches at LHC


- LHC is making significant progress
- The Higgs is either Very Heavy or close to LEP bound

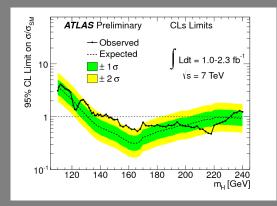
Peak at 140 GeV the Higgs?

CMS Higgs Excess

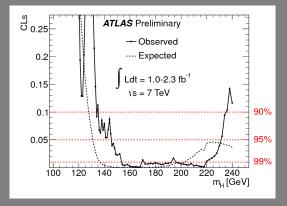

• CMS sees prominent peek at 140 GeV, mostly in H $\rightarrow \gamma\gamma$

: ୬ବ୍ଦ

CMS Higgs Excess


• Atlas sees no 140 GeV peek in $H \rightarrow \gamma \gamma$

| □ ▶ ◀ 🗗 ▶ ◀ 토 ▶ ◀ 토 ▶ | 토 - ∽) < (~


Higgs Searches at LHC: Continued

- Atlas Low Mass exclusion plot
- Atlas believes $m_H = 128 \text{ GeV}$ (Private Conversation)

Higgs Searches at LHC: Continued

Exclusion Confidence Levels

▲□▶▲□▶▲豆▶▲豆▶ 豆 のへで

Why Gauge Mediation?

 Softly broken MSSM has many parameters(109 PILAFTSIS)

 $m_{\tilde{f}}^2, M_i, A_{ij}, B_{ij}$

Generic Soft Masses and A terms give FV

Phenomenology requires

$$m^2_{ ilde{f}_{ij}} \simeq M_{f_i} \delta_{ij}$$
 etc.

- Need a well motivated model with no FV
- Minimal gauge mediation also has no CP problem

Conventional Gauge Mediated SUSY Breaking

- Messengers are in GUT consistent representations
- Simplest representation, $5 + \overline{5}$

$$\Phi = (\Phi_L \ \Phi_C) \qquad \bar{\Phi} = (\bar{\Phi}_L \ \bar{\Phi}_C)$$

Messenger parity sequesters the messenger sector

$$\Phi
ightarrow - \Phi \qquad ar \Phi
ightarrow - ar \Phi$$

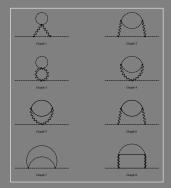
Messenger sector couples to a gauge singlet spurion

$$W_M = Z\bar{\Phi}\Phi$$
 $Z = M + \theta^2 F$

Without Messenger Parity

- Messengers quantum numbers identical to SM fields
- Flavor violating interactions not forbidden

$$W = \rho_1 \Phi_{\bar{L}} Q_L \bar{U}_R + \rho_2 \bar{\Phi}_{\bar{L}} Q_L \bar{D}_R + \rho_3 \bar{\Phi}_{\bar{L}} L_L \bar{E}_R ,$$


- Generic soft masses are generated
- Operators contributing to Proton decay

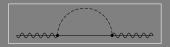
$$W = \lambda_1 \Phi_D Q_L Q_L + \lambda_2 \bar{\Phi}_D Q_L L_L ,$$

Messenger parity seems quite necessary

Mass Generation in Gauge Mediation

Scalar masses generated at two loops

$$m_{ ilde{t}}^2\simeq \left(rac{g^2}{16\pi^2}
ight)^2rac{F^2}{M^2}$$


□ ▶ < 쿕 ▶ < 重 ▶ < 電 ▶ < □ ▶ < < □ ▶

Mass Generation in Gauge Mediation

Scalar masses generated at two loops

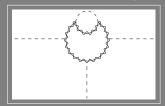
$$m_{ ilde{f}}^2\simeq \left(rac{g^2}{16\pi^2}
ight)^2rac{F^2}{M^2}$$

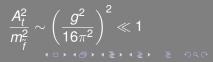
Gaugino masses generated at one loops

$$m_{ ilde{\chi}} \simeq \left(rac{g^2}{16\pi^2}
ight) rac{F}{M} \simeq m_{ ilde{f}}$$

▲□▶▲□▶▲亘▶▲亘▶ ▲□ ▶ ▲□

Mass Generation in Gauge Mediation


Scalar masses generated at two loops


$$m_{\widetilde{f}}^2\simeq \left(rac{g^2}{16\pi^2}
ight)^2rac{F^2}{M^2}$$

Gaugino masses generated at one loops

$$m_{ ilde{\chi}} \simeq \left(rac{g^2}{16\pi^2}
ight) rac{F}{M}$$

Trilinears at two loops

Higgs Boson of mGMSB

A_t ~ 0 minimal gauge mediation
 One-loop Higgs mass

$$m_{h^0}^2 \lesssim m_Z^2 \cos^2 2eta + rac{3}{4\pi^2} y_t^2 m_t^2 \sin^2eta \left(\log rac{m_{ ilde{t}}^2}{m_t^2} + rac{A_t^2}{m_{ ilde{t}}^2} - rac{A_t^4}{12m_{ ilde{t}}^4}
ight)\,.$$

- Larger log enhance term still present
- A_t contribute very little
- $m_H < 120 \text{ GeV}$ even for $m_{\tilde{g}} = 2.5 \text{ TeV}$

Are large A-terms possible in gauge mediation?

- Messenger parity
 — the Yukawa sector and messegner sector interact only at the loop level
- SUSY breaking only communicated through gauge fields
- A_t not possible at one-loop

- Wish list for more generic gauge mediation

 - No flavor violation
 - No proton decay problems

SUSY-zero and Messenger Higgs Mixing

Gauge mediation without messenger parity

		H_u							
<i>U</i> (1)	+1	-2	-3	+1	+2	0	0	0	0

$$W = gZ\bar{\Phi}\Phi + \left\langle \phi_{+}\right\rangle^{2} Z\bar{\Phi}H_{u} = gZ\bar{\Phi}\Phi + g'Z\bar{\Phi}H_{u}$$

- ϕ_+ is some spurion of charge 1
- Holomorphy forbids negatively charged couplings
- Only two additional interaction allowed

Proton Decay and Flavor Violation

Charge Assignments

		H_u							
<i>U</i> (1)	+1	-2	-3	+1	+2	0	0	0	0

Flavor Violation

 $W = \subset \rho_1 \Phi_{\bar{L}} Q_L \bar{U}_R + \rho_2 \bar{\Phi}_{\bar{L}} Q_L \bar{D}_R + \rho_3 \bar{\Phi}_{\bar{L}} L_L \bar{E}_R ,$ 0 + 1 + 1 0 + 1 + 2 0 + 2 + 1

Proton Decay

 $W = \lambda_1 \Phi_D Q_L Q_L + \lambda_2 \overline{\Phi}_D Q_L L_L ,$ 0 + 1 + 1 0 + 1 + 2

▶ ϕ_+ does not help because of holomorphy, ϕ_+ does not help because of holomorphy, ϕ_+ does not help because of holomorphy

Four Types of More Generic Gauge Mediation

Four realizations of Gauge Mediation

- No mixings between the messengers and the Higgs pair
- The messenger Φ_L mixes with H_u with the help of a "charged" coupling constant
- The messenger Φ_L mixes with H_d with the help of a "charged" coupling constant
- ► The messengers $\Phi_{\overline{L}}$ and $\overline{\Phi}_{\overline{L}}$ mix with H_u and H_d , respectively, with the help of "charged" coupling constants.

Type-II Gauge Mediation

Type-II gauge mediation, H_u mixes with messengers

 $W = g Z \bar{\Phi} \tilde{\Phi} + g' Z \bar{\Phi}_{\bar{L}} \tilde{H}_u + \tilde{\mu} \tilde{H}_u H_d + \tilde{y}_{Uij} \tilde{H}_u Q_{Li} \bar{U}_{Rj} \; ,$

Rotating, a messenger Yukawa interaction emerges

 $W = \bar{g}Z\bar{\Phi}\Phi + \mu H_uH_d + \mu'\Phi_{\bar{L}}H_d + y_{Uij}H_uQ_{Li}\bar{U}_{Rj} + y'_{Uij}\Phi_{\bar{L}}Q_{Li}\bar{U}_{Rj} ,$

$$egin{aligned} y_{Uij} = rac{g}{\sqrt{g^2 + g'^2}} ilde{y}_{Uij} \;, \quad y'_{Uij} = rac{g'}{\sqrt{g^2 + g'^2}} ilde{y}_{Uij} \;. \end{aligned}$$

▶ Messenger Higgs mixing suppressed by μ'/M

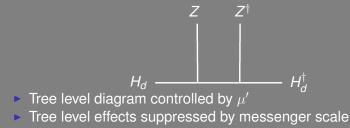
Flavor in More Generic Gauge Mediation

Messenger-Yukawa sector interactions

$$W = y_{Uij}H_uQ_{Li}\bar{U}_{Rj} + y'_{Uij}\Phi_{\bar{L}}Q_{Li}\bar{U}_{Rj} \; ,$$

Yukawa couplings proportional

$$y_{Uij} = rac{g}{g'} y'_{Uij}$$


- Minimal Flavor violation!!!
- \triangleright y_{Uij} and y'_{Uij} diagonalized simultaneously

Tree Level Effects

Interactions

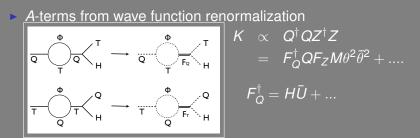
$$W = \bar{g}Z\bar{\Phi}\Phi + \mu'\Phi_{\bar{L}}H_d$$


Higgs messenger mixing gives tree level Higgs mass

$$m_{H_d}^2 = -\mu'^2 \frac{F^2}{M^4 - F^2} \simeq -\mu'^2 \frac{F^2}{M^4}$$

One-Loop Scalar Masses

One-loop squark and slepton masses



One-loop contribution is negative

$$\delta m_{Q_3}^2 = \frac{1}{2} \delta m_{U_3}^2 \simeq \frac{8}{3} \left(\frac{\alpha_3}{4\pi}\right)^2 \frac{F^2}{M^2} - \frac{y_t'^2}{48\pi^2} \frac{F^2}{M^2} \frac{F^2}{M^4} , \quad (x \ll 1)$$
Positive stop mass constraints

$$rac{F}{M^2} \ll 2\sqrt{2} imes rac{lpha_3}{y_t'}$$
 .

A-Terms in Gauge Mediation

• A-term not suppressed by F/M^2 (can be large)

$$A_t = -rac{3}{32\pi^2} y_t'^2 rac{F}{M} rac{1}{x} \log\left(rac{1+x}{1-x}
ight) \simeq -rac{3y_t'^2}{16\pi^2} rac{F}{M}$$

Two-Loop Scalar Masses

► Two-loop contribution from wave function renormalization $\mathcal{L} \supset \int d^4 \theta \Phi^{\dagger} Z_{\Phi}(|Z|) \Phi \qquad Z = M + \theta^2 F$ $Z_{\Phi}(|Z|) = Z_{\Phi}(M) + \frac{1}{2} \frac{\partial Z_{\Phi}(M)}{\partial M} \left(F \theta^2 + F^{\dagger} \bar{\theta}^2\right) + \frac{1}{4} \frac{\partial^2 Z_{\Phi}(M)}{\partial M^2} F^{\dagger} F \theta^2 \bar{\theta}^2$

Redefine the Q to go to the canonical basis

$$\Phi = Z^{1/2} \left(1 + \frac{1}{Z} \frac{\partial Z}{\partial M} F \theta^2 \right)$$

This gives two-loop mass contribution

$$M_Q^2 = -\frac{1}{4} \frac{\partial^2 \ln Z}{\partial^2 \ln |M|} \frac{FF^{\dagger}}{M^{\dagger}M}$$

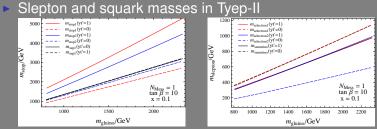
Two-Loop: Messenger Higgs Mixing

 Messenger-Higgs wave functions mix (δZ_{HΦ} ≠ 0)
 Need to choose a rotation that keeps g' = 0 gZΦ_LΦ_L → gZΦ_L(Φ_L − δZ_{HQ}H_u)

• Wave function mixing absorbed by H_u only

$$\Phi_L \simeq \Phi'_L H_u \simeq H'_u - \delta Z_{H\Phi} \Phi'_L$$

Only beta function of y' affected by mixing

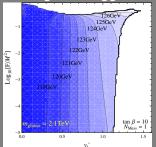

Two-Loop Sfermion Masses

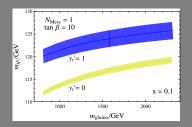
Two loop contributions to the scalar masses

$$\begin{split} \delta m^2_{Q_3} &= \frac{y'^2_t}{128\pi^4} \left(3y'^2_t + 3y^2_t - \frac{8}{3}g^2_3 - \frac{3}{2}g^2_2 - \frac{13}{30}g^2_1 \right) \frac{F^2}{M^2} \,, \\ \delta m^2_{\overline{t}} &= \frac{y'^2_t}{128\pi^4} \left(6y'^2_t + 6y^2_t - \frac{16}{3}g^2_3 - 3g^2_2 - \frac{13}{15}g^2_1 \right) \frac{F^2}{M^2} \,, \\ \delta m^2_{\mathcal{H}_u} &= -9\frac{y^2_t y'^2_t}{256\pi^4} \frac{F^2}{M^2} \,. \end{split}$$

- Two loop contribution important, not suppressed by F/M^2 .
- Two loop contribution to squarks POSITIVE for most y'_t
- Two-loop > One-loop contribution unless $F/M^2 \simeq 1$

Mass Spectrum of Type-II


- Third generation squark masses significantly increased
- Right-handed slepton masses decreased
- Left-handed slepton masses increased


$$\deltaeta_{m_{l}^2}\simeq rac{1}{8\pi^2}rac{3}{5}Yg_1^2 \mathcal{S}_{\it new}\propto m_{Q_3}^2-2m_{U_3}^2$$

S is large and negative because of two-loop contribution

Lightest Higgs Boson Mass

The Lightest Higgs boson mass in Type-II

Upper bound on *F*/*M*² from tachyonic stop mas
 Upper bound on *y'*_t from tachyonic slepton

$$\deltaeta_{m_l^2}\simeq rac{1}{8\pi^2}rac{3}{5}Yg_1^2 {\cal S}_{\it new}\propto m_{Q_3}^2-2m_{U_3}^2$$

S is large and negative because of two-loop_contribution =

Conclusion

- Past years of experiment have rigorously tested the SM
- Final piece (Higgs) to be unveiled soon
- ▶ LHC excluded Higgs mass in most of 145~ 400 GeV (95%)
- Some prominent features are emerging
- Vanilla SUSY models have very light Higgs mass
- Using SUSY-zero, Higgs-Messenger mixing possible
- Higgs-Messenger mixing enhances A-terms
- Large A-terms Give larger Higgs mass