Quantum Mechanics 115B

Postulates of

Quantum Mechanics

1) state of a QM system is represented by a wavefunction $\psi(x, t)$ or a ket $|\psi\rangle$ (p. 1, 118)
2) observables are represented by Hermitian operators, A, that act on kets
(p. 97)
3) the only possible result of a measurement is an eigenvalue of the operator (p. 99)

$$
A\left|\psi_{n}\right\rangle=a_{n}\left|\psi_{n}\right\rangle
$$

Postulates of

Quantum Mechanics

4) the probability of measuring a_{n} is

$$
\begin{equation*}
\mathcal{P}\left(a_{n}\right)=\left|\left\langle\psi_{n} \mid \psi\right\rangle\right|^{2} \tag{p.107}
\end{equation*}
$$

5) after a measurement yielding a_{n} the new state is a normalized projection (p. 99, 123)

$$
\left|\psi^{\prime}\right\rangle=\frac{P_{n}|\psi\rangle}{\sqrt{\langle\psi| P_{n}|\psi\rangle}}
$$

6) the time evolution of the state is given by the Schroedinger eq.

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

Stern-Gerlach

neutral silver atoms

STERN-GERLACH EXPERIMENT

Stern-Gerlach

magnetic dipole moment

$$
\begin{gathered}
H=-\vec{\mu} \cdot \vec{B} \\
F_{z}=\frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B})=\mu_{z} \frac{\partial B_{z}}{\partial z} \\
\text { current loop } \\
\mu=\frac{I A}{c} \\
\mu=\frac{q v \pi r^{2}}{c 2 \pi r}=\frac{q r v}{2 c}=\frac{q}{2 m c} L
\end{gathered}
$$

Stern-Gerlach

suppose electron has intrinsic angular momentum

$$
\begin{gathered}
\vec{\mu}=\gamma \vec{S} \\
F_{z}=\gamma S_{z} \frac{\partial B_{z}}{\partial z} \\
S_{z}= \pm \frac{\hbar}{2}
\end{gathered}
$$

Stern-Gerlach

Stern-Gerlach

1) state of a QM system is represented by a wavefunction or a ket

Stern-Gerlach

2) observables are Hermitian operators, they act on states

$$
S_{z}
$$

Stern-Gerlach

3) the only possible result of a measurement is an eigenvalue of the operator

$$
\begin{aligned}
S_{z}|+\rangle & =+\frac{\hbar}{2}|+\rangle \\
S_{z}|-\rangle & =-\frac{\hbar}{2}|-\rangle
\end{aligned}
$$

Eigenbasis: Normalization,

Orthogonality, Completeness

$$
\begin{gathered}
\langle+\mid+\rangle=1 \\
\langle-\mid-\rangle=1 \\
\langle+\mid-\rangle=0 \\
\langle-\mid+\rangle=0 \\
|\psi\rangle=a|+\rangle+b|-\rangle \\
\langle\psi|=a^{*}\langle+|+b^{*}\langle-| \\
\langle\psi \mid \psi\rangle=\left(a^{*}\langle+|+b^{*}\langle-|\right)(a|+\rangle+b|-\rangle) \\
=|a|^{2}+|b|^{2}=1
\end{gathered}
$$

Stern-Gerlach

4) the probability of measuring + or - is

$$
\begin{aligned}
& |\langle+\mid \psi\rangle|^{2} \\
& |\langle-\mid \psi\rangle|^{2}
\end{aligned}
$$

Stern-Gerlach

5) after a measurement yielding + the new state is a normalized projection

$$
\begin{gathered}
P_{+}(a|+\rangle+b|-\rangle)=a \mid+> \\
\left|\psi^{\prime}\right\rangle=\frac{P_{+}|\psi\rangle}{\sqrt{\langle\psi| P_{+}|\psi\rangle}}=\frac{a|+\rangle}{\sqrt{\langle\psi| a|+\rangle}}=|+\rangle
\end{gathered}
$$

Stern-Gerlach

Analysis

Stern-Gerlach

$$
b=-d
$$

destructive interference

Superposition

not the same as a mixture

always measure + for this state

Matrix Notation

Matrix Notation

$$
\begin{gathered}
|\psi\rangle=a|+\rangle+b|-\rangle \rightarrow\binom{a}{b} \\
\langle\psi \mid \psi\rangle \rightarrow\left(\begin{array}{ll}
a^{*} & b^{*}
\end{array}\right)\binom{a}{b}=|a|^{2}+|b|^{2} \\
S_{z} \rightarrow\left(\begin{array}{cc}
\hbar / 2 & 0 \\
0 & -\hbar / 2
\end{array}\right) \\
\langle\psi| S_{z}|\psi\rangle \rightarrow \\
\left(\begin{array}{ll}
a^{*} & b^{*}
\end{array}\right)\left(\begin{array}{cc}
\hbar / 2 & 0 \\
0 & -\hbar / 2
\end{array}\right)\binom{a}{b} \\
=|a|^{2}(\hbar / 2)+|b|^{2}(-\hbar / 2)
\end{gathered}
$$

Pauli Matrix Notation

$$
\begin{gathered}
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
S_{x}=\frac{\hbar}{2} \sigma^{1}, S_{y}=\frac{\hbar}{2} \sigma^{2}, S_{z}=\frac{\hbar}{2} \sigma^{3}, \\
S_{x}|+\rangle_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{\sqrt{\sqrt{2}}}{\sqrt{2}}}=\frac{\hbar}{2}|+\rangle_{x} \\
S_{x}|-\rangle_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-\frac{\hbar}{2}|+\rangle_{x}
\end{gathered}
$$

Matrix Notation

$$
\begin{gathered}
A_{i j}=\left\langle\psi_{i}\right| A\left|\psi_{j}\right\rangle \\
A \rightarrow\left(\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \ldots \\
A_{21} & A_{22} & A_{23} & \ldots \\
A_{31} & A_{32} & A_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
\end{gathered}
$$

Matrix Projection

$$
\begin{gathered}
P_{+} \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
P_{-} \rightarrow\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
P_{+} P_{+}=P_{+} \\
\left|\psi^{\prime}\right\rangle=\frac{P_{+}|\psi\rangle}{\sqrt{\langle\psi| P_{+}|\psi\rangle}}=|+\rangle
\end{gathered}
$$

Time Evolution

$$
H=\omega S_{z}=\frac{\omega \hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

6) the time evolution of the state is given by the Schroedinger eq.

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \psi(t)=H \psi(t) \\
\psi(0)=\binom{\cos (\alpha / 2)}{\sin (\alpha / 2)} \\
\psi(t)=\binom{\cos (\alpha / 2) e^{-i \omega t / 2}}{\sin (\alpha / 2) e^{+i \omega t / 2}} \\
\langle\psi| S_{z}|\psi\rangle=\cos \left(\frac{\alpha}{2}\right)^{2} \frac{\hbar}{2}-\sin \left(\frac{\alpha}{2}\right)^{2} \frac{\hbar}{2}=\frac{\hbar}{2} \cos (\alpha)
\end{gathered}
$$

