Relativistic Corrections

$$E_{\rm rel}^1 \sim \frac{Z^2 \,\alpha^2 \,m \,c^2}{2 \,n^2}$$

unusual metals with large Z: gold (79) and mercury (80)

Relativistic Corrections

	Atom	Average atomic mass	Ground state configuration
79	Au	196.9665	[Kr] 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ¹
80	Hg	200.59	[Kr] 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ²
81	ТΙ	204.383	[Kr] 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ¹

relativistic corrections shrink s-wave orbitals electrons not shared, almost chemically inert

Figure 1. Radial densities for the 1s, 2s, 3s, and 2p states of a hydrogen-like atom with Z = 80. The dashed curves are nonrelativistic (NR) and the full curves relativistic. The contractions for 1s, 2s, $2p_{1/2}$, and 3s are of the same order of magnitude while that for $2p_{3/2}$ is much smaller. Reproduced with permission from Burke and Grant.^{23b}

Relativistic Corrections

relativistic corrections shrink 5d-6s splitting gold reflects yellow, but absorbs shorter wavelengths

Anomalous Magnetic Moment integrate over momentum: $q = 2 + \frac{\alpha}{-}$

 π

 $g = 2 + \frac{\ddot{\alpha}}{\pi} + c_2 \,\alpha^2 + c_3 \,\alpha^3 + c_4 \,\alpha^4$

Anomalous Magnetic Moment integrate over momentum: $g = 2 + \frac{\alpha}{-}$

 $g = 2 + \frac{\pi}{\alpha} + c_2 \,\alpha^2 + c_3 \,\alpha^3 + c_4 \,\alpha^4$

 $\alpha^{-1} = 137.035999070(98)$

spectroscopy: $\alpha^{-1} = 137.03599878(91).$

coupling is distance dependent $\alpha(10^{-10} \text{ m}) \approx \frac{1}{137} \qquad \alpha(10^{-17} \text{ m}) \approx \frac{1}{128}$