Exercise 1

1. Construct the massive supermultiplet of $\mathcal{N}=3$ SUSY for the lowest weight state (Clifford "vacuum") having spin 0. (Use the notation where the raising operator on this state produces a state (\square, \square) where the first \square indicates a 3 of the $S U(3) R$-symmetry and second \square denotes a spin half doublet. You can use the following $S U(3)$ group theory results (keep in mind that $\bar{\square}=\boxminus \leftrightarrow \overline{3}$)

$$
\begin{align*}
\square \times \square=\boxminus+\square & \leftrightarrow 3 \times 3=\overline{3}_{A}+6_{S}, \tag{1}\\
\exists \times \square=1+\square & \leftrightarrow \overline{3} \times 3=1+8 . \tag{2}
\end{align*}
$$

Check that there are an equal number of bosonic and fermionic states in the supermultiplet. Is this state equivalent to a massive supermultiplet of $\mathcal{N}=4$?
2. Consider $\mathcal{N}=4$ SUSY with a 4×4 central charge matrix \mathbf{Z}. In a skew diagonal basis we can write

$$
Z=\left(\begin{array}{lr}
Z_{1} \epsilon^{a b} & 0 \tag{3}\\
0 & Z_{2} \epsilon^{a b}
\end{array}\right)
$$

where $a=1,2$ and $b=1,2$. In this basis the SUSY algebra can be written as

$$
\begin{align*}
\left\{Q_{\alpha}^{a L}, Q_{\dot{\dot{b} N N}}^{\dagger}\right\} & =2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu} \delta_{b}^{a} \delta_{N}^{L}, \tag{4}\\
\left\{Q_{\alpha}^{a L}, Q_{\beta}^{b N}\right\} & =2 \sqrt{2} \epsilon_{\alpha \beta \beta} \epsilon^{a b} \delta^{L N} Z_{N}, \tag{5}\\
\left\{Q_{\dot{\alpha} a L}^{\dagger}, Q_{\dot{\beta} b N}^{\dagger}\right\} & =2 \sqrt{2} \epsilon_{\dot{\alpha} \dot{\beta}} \epsilon_{a b} \delta_{L N} Z_{N}, \tag{6}
\end{align*}
$$

where $L=1,2 ; N=1,2$; and the repeated index N is not summed over. Defining

$$
\begin{align*}
A_{\alpha}^{L} & =\frac{1}{2}\left[Q_{\alpha}^{1 L}+\epsilon_{\alpha \beta}\left(Q_{\beta}^{2 L}\right)^{\dagger}\right] \tag{7}\\
B_{\alpha}^{L} & =\frac{1}{2}\left[Q_{\alpha}^{1 L}-\epsilon_{\alpha \beta}\left(Q_{\beta}^{2 L}\right)^{\dagger}\right] \tag{8}
\end{align*}
$$

reduces the algebra in the rest frame to

$$
\begin{align*}
& \left\{A_{\alpha}^{L}, A_{\beta N}^{\dagger}\right\}=\delta_{\alpha \beta} \delta_{N}^{L}\left(M+\sqrt{2} Z_{L}\right) \tag{9}\\
& \left\{B_{\alpha}^{L}, B_{\beta N}^{\dagger}\right\}=\delta_{\alpha \beta} \delta_{N}^{L}\left(M-\sqrt{2} Z_{L}\right) \tag{10}
\end{align*}
$$

Consider a massive state with $M=\sqrt{2} Z_{1}=\sqrt{2} Z_{2}$ and construct the short multiplet starting with the spin 0 Clifford vacuum $\left|\Omega_{0}\right\rangle$. Label the elements of the multiplet with an $S U(2)_{R}$ representation d_{R} and the spin $2 j+1$.

