
Current Projects

Zhenyu Han

For DOE review, 2006. Physics Department. UC Davis.

- Mass determination with missing particles at the LHC (with Witek Skiba).
- Gauge-Higgs unification without tadpoles (with Yang Bai).

- Missing particles bring difficulties in event reconstruction and mass determination.
- Example: t' pair production, assuming $t' \rightarrow t + A'$. A': neutral missing particle.

• Variables sensitive to the mass difference $M_{t'} - M_{A'}$, but not the absolute scale of the masses: average values of missing transverse momentum, total transverse momentum, etc. (*Cheng, Low & Wang; Meade & Reece*)

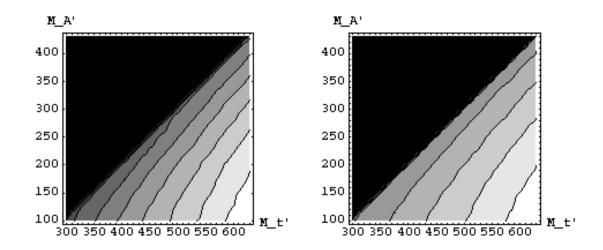


Figure 1: Contour plots for $\langle P_t \rangle$ and $\langle H_t \rangle$

• If found a variable with a different dependence on $M_{t'}$ and $M_{A'} \Longrightarrow$ masses determined.

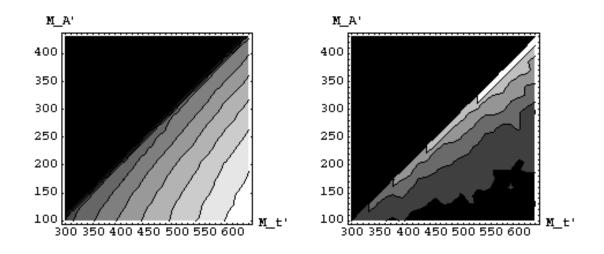


Figure 2: Contour plot for $\langle \mathbb{P}_t \rangle$, and the correlation between $\langle \mathbb{P}_t \rangle$ and $\langle H_t \rangle$.

- Generate events: signal+SM background, PYTHIA+ATLFAST
- Optimize the cuts to keep signal events and reduce background events.
- Looking for the best variable: stable and yields significant difference to raise the degeneracy.
- Estimate how well we could measure the masses at LHC.

- An alternative solution to the hierarchy problem –gauge symmetry in extradimensions protects the Higgs mass.
- Gauge components in extra-dimensions A_5, A_6 behave as scalar fields in 4-dimensions—candidates for the Higgs.
- Orbifold symmetry breaking–larger group broken to $SU(2) \times U(1)$ by boundary conditions and yields Higgs doublets

e.x. $SU(3) \to SU(2) \times U(1) : 8 \to 3 + 2 + 2 + 1.$

• Higgs mass proportional to the symmetry breaking scale $(M_h^2 \sim \frac{1}{16\pi^2 R^2})$, protected by gauge symmetry beyond that.

- There exist fixed points with symmetry broken to the SM $SU(2) \times U(1)$.
- In SU(3) theory, F_{yz}^8 is gauge invariant on the fixed points and contains a Higgs mass term.

 $\implies M_h^2 \sim \Lambda^2 / 16\pi^2$. $\Lambda : cutoff$.

Reintroduce the hierarchy problem.

• The tadpole problem is generic in gauge-Higgs unification in 6 dimensions, if the unbroken gauge symmetry contains a U(1) factor.

- E.x. $G_2 \to SU(3)$ on one fixed points, $G_2 \to SU(2) \times SU(2)$ on another fixed points. The common subgroup of SU(3) and $SU(2) \times SU(2)$ is $SU(2) \times U(1)$.
- The symmetry is broken to $SU(2) \times U(1)$ globally, but at each fixed points, the symmetry is larger than $SU(2) \times U(1)$.

 \implies No tadpoles can be added.

• The goal: construct a realistic model– choices of orbifold, gauge group, fermion representations, Yukawa interactions...

Get ready for LHC: models and tools. ... but keep others in mind...