matthew schwartz, johns hopkins

TOP-TAGGING

INTRODUCTION TO TOP PHYSICS

The top quark is the heaviest known particle

$$m_t = 172.6 \pm 2.4 \text{ GeV}$$

Top decays to a b and a W

semi-leptonic

hadronic

TOPS AT THE TEVATRON

- We have already produced 10,000 tt pairs at the Tevatron
- What do we know about the top?
 - mass: ~1%
 - charge: not -4/3 to ~95%
 - decay modes
 - Wb > 80%
 - $Z_{c}, Z_{\gamma} < 10\%$
 - (V A) coupling ~12%
 - evidence for single top (3σ)
- What don't we know?
 - spin
 - width
 - Yukawa coupling
 - non-Wb decay modes

TOPS AT THE LHC

- cross section is 850 pb at the LHC (vs 8 pb at the Tevatron)
- LHC will produce 1 million ttbar pairs/ fb⁻¹

- Allows precision top physics.
- With 10 fb⁻¹:
 - 0.5% accuracy on mass
 - 2% accuracy on V-A couplings
 - 4% accuracy on spin
 - Yukawa coupling depends on Higgs mass
 - •20% accuracy with 30 fb⁻¹ if m_H ~ 200 GeV,
 - Flavor-Changing Neutral Currents (eg. t→cZ):
 - •BR < 5x10-4

TOPS

 The top contribution to precision electroweak studies give the best indication of new physics so far

TOPS

Top couples strongly to the Higgs

$$\lambda_t = \sqrt{2} \frac{m_t}{v} = 0.99$$

- The top usually couples strongly to new physics too
 - Stops in supersymemtry
 - Kaluza-Klein (KK) modes in extra dimensions
 - Top primes/Z primes in Little Higgs models
 - KK gluons in Randall-Sundrum models

Top Decays

- •t \rightarrow H+b,
- •FCNCs
 - strong indirect constraints
 from B-physics
 - window open for t_R decays

Top Production

- tt resonances
- top-partner pair production

$$pp \rightarrow t't' \rightarrow tt + \cancel{E}_T$$

TT RESONANCES

KK GLUONS

BACKGROUND IS HUGE

TOPS +

$$pp \to T\bar{T} X \to tA^0 \bar{t}A^0 X \to t\bar{t} + E_T + X$$

Even with missing energy cut, QCD background is huge

FINDING TOPS

Standard Procedure is look for tt in lepton+jets channel:

- Backgrounds are
 - Wbb + jets
 - W+ jets
 - t + jets

- Difficult to use electrons at high p_T not isolated
- Branching ratio with one muon is 10% -- lose a lot of signal
- Branching ratio to two muons = 1% -- lose most of signal
- Require 1 or 2 b-tags
 - •b-tagging efficiency degrades at high p_T
- At high p_T, jets on hadronic side are not isolated

B-TAGGING

Taken from A. Rizzi

b-tagging efficiency degrades at high p_T

and high luminosity:

ALL-HADRONIC TT

Can we tag the all-hadronic tt events at high p_T ?

tt events look just like dijets!

D. Kaplan, K. Rehermann, MDS, and B. Tweedie arXiv:0806.0848

- 1. Look for subjets
- 2. Cut on top mass
- 3. Cut on W mass
- 4. Cut on helicity angle

We can beat the background with no b-tagging!

TYPICAL TOP JETS

TYPICAL DIJETS

TYPICAL TOP JETS

TYPICAL DIJETS

SUBJET DECOMPOSITION

- 1. Find fat jets first
 - We use Cambridge-Aachen algorithm purely geometric
 - Fat jet size R = 0.4-0.8

- 2. Reverse clustering steps
 - Ignore soft "particles":

$$\frac{p_T^{(\mathrm{particle})}}{p_T^{(\mathrm{jet})}} > \delta_p \sim 0.05 - 0.1$$

- Demand minimal separation: $|\Delta \eta| + |\Delta \phi| > \delta_r \sim 0.2$
- Tops should have 3 (or 4) subjets

EFFICIENCY

• Fat jet with 3 or 4 hard (δ_p) , separated (δ_r) subjets

CUT AROUND TOP MASS

$p_T > 700 \text{ GeV}$

- After subjet requirement
- Cut on fat jet mass around M₁

145 GeV< M_i < 205 GeV

 $(for M_t = 175 GeV)$

EFFICIENCIES

subjet cut only

EFFICIENCIES

subjet + M_t cuts

CUT AROUND W MASS

$p_T > 700 \text{ GeV}$

- After subjet requirement
- After M_t cut
- One pair of jets should have mass M_w

 $(M_W = 80 \text{ GeV})$

 $M_{12} \equiv \text{pair whose mass}$ is closest to M_W

EFFICIENCIES

subjet + M_t + M_w cuts

HELICITY ANGLE

W frame:

lab frame:

Hubaut:hep-ex/0605029

- W decays basically isotropically
- can be used to measure W helicity

LHC simulation

- Intermediate off-shell massless parton
- Helicity angle strongly peaked
- divergent in perturbation theory (soft divergence)

$$\frac{d\sigma}{dM_{12} d\cos\theta_h} = \frac{2 - \frac{M_{12}^2}{M_{123}^2} - \frac{2M_{123}^2}{M_{12}^2}}{1 - \cos(\theta_h)} + \cdots$$

CUT ON HELICITY ANGLE

$p_{T} > 700 \text{ GeV}$

- After subjet requirement
- After M_t cut
- After M_w cut
- Exclude small $\cos(\theta_h)$

 $\cos(\theta_{\rm h})$ < 0.7

EFFICIENCIES

subjet +
$$M_t$$
 + M_W + θ_h cuts

For p_T>1000 GeV

- Keep 40% tops
- •Reject 99% of light jets

numbers get squared for dijet events

DIJET CROSS SECTION

DIJET CROSS SECTION

RESONANCES

- Lillie et al, hep-ph/0701166, p.10
 "extraction of signal will require a background rejection of about a factor of 10"
- •We have a rejection factor of 10,000!

IMPROVEMENTS

- Use b-tagging
 - efficiency degrades at high p_T
 - top jets can be used to calibrate b-tagging!
- Finer resolution on particles
 - we used segmentation of hadronic calorimiter: $\Delta \eta \sim \Delta \phi \sim 0.1$
 - EM calorimiter: $\Delta \eta \sim \Delta \phi \sim 0.02$
 - tracking information even higher resolution
- More sophisticated observables
 - event shapes
 - fragmentation functions
- MC dependent
- may be calculable using field theory

- Cuts can be optimized
 - for particular new physics searches
 - including proper detector simulation
 - using decision trees/neural networks

HOW TO TEST

- Background (e.g. dijets)
 - Tevatron has plenty of dijets
 - Use sideband analysis at LHC
 - Calibrate the Monte-Carlo

- Signal (tt)
 - Use lepton+jets events

CONCLUSIONS

Top-tagging at high p_T is extremely efficient

Boosted hadronic tops
can be included with confidence
in standard model and new physics studies
at the LHC