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Introduction
we are considering a supersymmetric theory with an approximate

conformal sector. The conformal sector is soft broken at TeV scale, the
superpartners of SM particles develop a continuum above a mass gap.



the Ads5 metric
The 5D AdS5 metric written in the conformal coordinates :

ds2 =
(

R
z

)2 (
ηµνdx

µdxν − dz2
)
.

In RS2 model, there is only a UV cut off. The spectrum is Unparticles
without Mass Gap.

In RS1 model, there are two branes, one UV brane zUV = ε and one
IR brane zIR = L. The spectrum is discrete KK modes, the splitting of
those KK modes depends on the position of the IR brane.



SUSY fields in Ads5
The N = 1 SUSY in 5D is equivalent to N = 2 SUSY in 4D. An

N = 2 hypermultiplet Ψ can be decomposed into two N = 1 chiral
superfields Φ = {φ, χ, F} and Φc = {φc, ψ, Fc}, where the two Weyl
fermions χ and ψ form a Dirac fermion. The 5D action for matter fields
can be written as:

S =
∫
d4x dz

{∫
d4θ

(
R
z

)3
[Φ∗ Φ + Φc Φ∗

c ] +

+
∫
d2θ

(
R
z

)3 [
1
2 Φc ∂zΦ− 1

2 ∂zΦc Φ +m(z)R
z Φc Φ

]
+ h.c.

}
,

for m(z)R = c, we get a supersymmetric Randall-Sundrum Model.
Wavefunctions for the bulk fields are Bessel Functions.



soft wall model
Here we want to realize the scenario of one zero mode plus continuum

spectrum with a mass gap. Taking m(z)R = c+µ z, Soft breaking CFT
in the large IR will generate a mass gap between the zero mode and the
continuum spectrum.

Figure 1: zero mode plus continuum spectrum in the soft wall model



matter fields in the bulk
Decompose the 5D field into the product of 4D field and a profile:

χ(p, z) = χ4(p)
(

z

zUV

)2

fL(p, z), φ(p, z) = φ4(p)
(

z

zUV

)3/2

fL(p, z),

ψ(p, z) = ψ4(p)
(

z

zUV

)2

fR(p, z), φc(p, z) = φc4(p)
(

z

zUV

)3/2

fR(p, z),

• Susy relates the profiles of scalars and fermions, χ and φ has the
same 5D profiles.

• fL and fR are related by the first order 5D differential equations.



the 5D equations of motion
the Equations of Motion for the profiles are:

∂2

∂z2
fR +

(
p2 − µ2 − 2

µc

z
− c(c− 1)

z2

)
fR = 0

∂2

∂z2
fL +

(
p2 − µ2 − 2

µc

z
− c(c+ 1)

z2

)
fL = 0

• solutions are first kind and second kind of Whittaker Functions.

• zero mode profiles are f0
L(z) ∼ e−µzz−c and f0

R(z) ∼ eµzzc .

• when z →∞, the coefficients of the second term goes to (p2−µ2),
⇒ a continuum with mass gap.



the 5D profile functions
their solutions can be expressed as:

fL(p, z) = a ·M(− cµ√
µ2 − p2

,
1
2

+ c, 2
√
µ2 − p2z)

+b ·W (− cµ√
µ2 − p2

,
1
2

+ c, 2
√
µ2 − p2z)

fR(p, z) = a · 2(1 + 2c)
√
µ2 − p2

p
M(− cµ√

µ2 − p2
,−1

2
+ c, 2

√
µ2 − p2z)

+b · p

(µ+
√
µ2 − p2)

W (− cµ√
µ2 − p2

,−1
2

+ c, 2
√
µ2 − p2z)

κ ≡ − c µ√
µ2 − p2

,

M is the first kind Whittaker Function and W is the second kind
Whittaker Function. a and b are determined by boundary conditions.



gauge fields in the bulk
A 5D N = 1 vector supermultiplet can be decompose into a 4D

N = 1 vector supermultiplet V = (Aµ, λ1, D) and a 4D N = 1 chiral
supermultiplet χ = ((Σ + iA5)/

√
2, λ2, Fχ).

SV =
∫
d4xdz · R

z

1
4

∫
d2θWαW

αΦ + h.c.

+
∫
d4xdz · R

z

1
2

∫
d4θ(∂zV − R

z

(χ+ χ†)√
2

)2(Φ + Φ†)

dilaton field can gain a VEV 〈Φ〉 = e−2uz/g2
5 , which will generate a

mass gap for the continuum mode.



adding gauge fixing term (unitary gauge ):

SGF = −
∫
d5x

R

z
· e

−2uz

g2
5

1
2

(
∂µA

µ +
z

R
∂z(

R

z
A5) +A5∂z(lnΦ)

)2

by analogy with the matter fields, for the gauge fields, we have:

λ1(p, z) = χ4(p)euz

(
z

zUV

)2

hL Aµ(p, z) = Aµ4(p)euz

(
z

zUV

)1/2

hL

λ2(p, z) = ψ4(p)euz

(
z

zUV

)2

hR Σ = φ4(p)euz

(
z

zUV

)3/2

hR

• hL and hR are fL and fR evaluated at c = 1/2.

• zero mode profile for the gauge boson is constant ⇒ zero mode
gauge boson coupling to matter fields are universal.



5D scalar propagator
The propagator for the left handed scalar field satisfies the following
homogeneous equations in momentum-position space:(

∂2
z − 3

z∂z + (c2 + c− 15
4 ) 1

z2 + 2cµ
z + (µ2 − p2)

)
P (p, z, z′)

=
(

zUV

z

)−3
iδ(z − z′)

• in the region of z < z′ and z > z′, the solutions are Whittaker
functions.

• propagator in the two region will be matched at z = z′.

• we prefer to choose another two independent solutions K(p, z) and
S(p, z), which are linear combinations of Whittaker functions. This
definition can be generalized to warped space with generic metric.



two independent solutions

K(p, z) =
(

z
zUV

)3/2 W (κ, 1
2+c,2

√
µ2−p2z)

W (κ, 1
2+c,2

√
µ2−p2zUV )

S(p, z) =
(

z
zUV

)3/2
1

2
√

µ2−p2

Γ(1+c−κ)
Γ(2+2c)(

M(κ, 1
2 + c, 2

√
µ2 − p2z) W (κ, 1

2 + c, 2
√
µ2 − p2zUV )

−W (κ, 1
2 + c, 2

√
µ2 − p2z) M(κ, 1

2 + c, 2
√
µ2 − p2zUV )

)
κ ≡ − c µ√

µ2−p2
,

these two functions satisfying the following boundary conditions (K(p, z)
damping in the z region):

K(p, zUV ) = 1; S(p, zUV ) = 0 and S′(p, zUV ) = 1



boundary condition for propagator
• for the solutionP<(p, z, z′) in the z < z′ region, we can impose UV

boundary condition, at the z = zUV brane:(
∂z + 1

z (− 3
2 + c+ µz)

)
P<(p, z, z′)

∣∣
z=zUV

= 0

• for the solution P>(p, z, z′) in the z > z′ region, we require the
propagator exponentially damping for large Euclidean momenta
and large z , so that it can only contain the function K(p, z).

• at the point of z = z′, P<(p, z, z′) and P>(p, z, z′) can be matched
by the following two connection conditions.

P<(p, z, z′)− P>(p, z, z′)|z=z′ = 0
∂zP<(p, z, z′)− ∂zP>(p, z, z′)|z=z′ = i

(
zUV

z

)−3



expression for propagator
In the basis of K(p, z) and S(p, z), our scalar propagator can be

expressed as, for z < z′:

P (p, z, z′) = K(p,z)K(p,z′)
Π(p) − S(p, z)K(p, z′)

for z > z′, exchange the position of z and z′. The second term in the
propagator will vanish on the UV brane.

expression for Π(p) is also concise in this basis:

Π(p) =
p2

(µ+
√
µ2 − p2)

·
W

(
− cµ√

−p2+µ2
, 1

2 − c, 2
√
−p2 + µ2 zUV

)
W

(
− cµ√

−p2+µ2
, 1

2 + c, 2
√
−p2 + µ2 zUV

)



interesting phenomenology

Figure 1: possible extended decay chain with continuum spectrum



neutrilino decay in soft wall model
we are considering one decay chain similar to Figure 2, neutrilino

decays into selectron then decays back into neutrilino.

p1 is the four momentum for χ1, k1 is the four momentum for χ2,
k2 is the four momentum for e−, and k3 is the four momentum for e+.
q = p1 − k2 and m is the mass for the selectron.

when the intermediate selectron is an single particle, we can use the
narrow width approximation:

1
q2−m2+im Γtotal

= P ( 1
q2−m2 ) + iπδ(q2 −m2)

if Γtotal � m, the imaginary part of the propagator gives the main
contribution and on shell decaying dominates.

when the intermediate mode is a continuum spectrum, situation may
become different:



• Putting an IR brane in the soft wall model, sothat the continuum
mode will become quasi continuum. The splitting between the KK
modes should be less than the mass gap.

• we need to integrate the overlapping of neutrilino wavefunctions
and the selectron propagator to get the vertex.

v(p1, q, k1) = N2
eNχ1Nχ2

∫ zIR

zUV
dz

∫ zIR

zUV
dz′e(u−µ)zz1/2−chL(p1, z)

·e(u−µ)z′
z′1/2−chL(k1, z

′) · P (q, z, z′)

• we can calculate the differential decay rate with respect to the first
electron energy for the three body neutrilino decay:

dΓ
dE2

= e4 |v(p1, q, k1)|2
E2

2(2E2

√
p2
1−p2

1+k2
1)

32(2E2−
√

p2
1)
√

p2
1π3



• fixing the mass of initial neutrilino, and summing over all the finial
neutrilino states, from the mass gap µ to the initial neutrilino mass√
p2
1. here is an example:

selectron: c = 0.5, and µ = 0.4 TeV.

neutrilino: u = 0.2 TeV.

Initial neutrilino mass: 1.59 TeV
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Figure 1: zUV = 10−3 TeV−1, zIR = 30 TeV−1. Left one (red one) is for two
body decay and right one (blue one) is for three body decay



conclusion
• the two body decay rate is peaked at small electron energy. neu-

trilino prefers to decay into selectron whose mass is close to it.
Reducing the mass of selectron increases the phase space but de-
creases the profile overlaping.

• for the three body decay, after summing over all the final states,
the decay rate is also peaked at small energy.

• Extended decay chain is possible in continuum spectrum situation


