Black Hole Microstate Counting using Pure D-brane Systems

Swapnamay Mondal

HRI, Allahabad, India

11.19.2015

UC Davis, Davis

based on JHEP10(2014)186 [arXiv:1405.0412] and upcoming paper

with Abhishek Chowdhury, Richard Garavuso & Ashoke Sen

Swapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

Plan of the talk

Overview

Our work

- Motivation
- * Our system
- * Warm up : an easier toy
- * Actual system
- * Towards a conjecture

Conclusion

・ロト ・回ト ・ヨト ・ヨト

æ

Long term goal:

to perform exact microscopic counting in $\mathcal{N}=2$ theories using pure D brane systems.

In these works, we test our methods for an intersecting D brane system in type IIA string theory, compactified on T⁶ and our computation yields the expected result.

All microstates we find carry zero angular momentum.

conjecture : At a generic point in moduli space, microstates of a single centred black hole all carry zero angular momentum.

Our conjecture has interesting impact on fuzzball program.

Overview

Swapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

・ロト ・回ト ・ヨト ・ヨト

Э

Black Holes: General Introduction

- Special solutions of Einstein's equations, in which there is a region of space time, bounded by an "event horizon", from which nothing can escape!
- They have been observed in our universe. (Hence not just a fancy theoretical stuff !)
- ▶ Black holes solutions are completely specified by only a few parameters (like mass, charge, angular momentum)
 ⇒ regarded as thermodynamical system, there seems to be no microstates, hence no entropy.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Black Holes should have entropy

What if black holes do not have entropy ?

- ★ 2nd law in danger : What happens to the entropy of a bucket of hot water, when thrown into a black hole ?
- ✤ postdiction in danger : If black holes do not have any microstates, how does it remeber the state of the star that colapsed into a black hole ?

Black Holes better have microstates and entropy.

・ 同 ト ・ ヨ ト ・ ヨ ト

Any candidate for entropy of a black hole?

- Laws of black hole mechanics \Rightarrow area of event horizon never decreases.
- ▶ Black Hole entropy \propto Black Hole area [proportionality constant] = $length^{-2}$ (in units $k_B = 1$).
- But there is no natural length scales in classical physics!
- ▶ There is Planck length in quantum gravity.

Lesson: black hole entropy is a window to quantum gravity !

イロト イポト イヨト イヨト

Importance for a theory of quantum gravity

What is the statistical understanding of entropy ?

Since classical gravity deos not answer this, it is for a quantum theory of gravity to answer this question.

A test for quantum gravity :

There may be many phases of a theory of quantum gravity, many of them would have black hole solutions. For each of them this question can be posed and must be answered.

An opportunity !

An experimental test of any theory of quantum gravity is highly unlikely in near future.

 \Rightarrow Theoretical tests such as this provide opportunities to check whether such a theory is consistent.

イロト イポト イヨト イヨト

Score card of string theory

very high score !

* In string theory one can answer this question (with high accuracy) for phases with high enough supersymmetry.

Many fascinating features of string theory (SUSY, dualities, AdS/CFT, extra dimensions) appear together in this problem. Thus success in this direction validates the very structure of string theory.

- * Considerable progress has been achieved for $\mathcal{N} = 8$, $\mathcal{N} = 4$ theories.
- * Not much achievement for $\mathcal{N} = 2$ theories.

The general story

- In supersymmetric theories certain quantities (called index) do not change as one changes the coupling of the theory.
- For supersymmetric black holes, one can relate degeneracy to index. It is enough to be able to compute the index for any coupling.
- ► Black holes are good descriptions for small G, large GM.
- microscopic description : For smaller G, small GM gravity is decoupled and the system contains stringy objects (like D branes). Computing index is easier in this description.
- How to get to microscopic description? Track the charges carried by the black hole.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Our Work

wapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Motivation

Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Motivation

wapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

◆□> ◆□> ◆注> ◆注> 二注:

Motivation

Our system Warm up: 2 intersecting brane The actual problem Towards a conjecture . . .

D brane systems are special

Only option for microscopic system in $\mathcal{N}=2$ theories (CY3 compactifications).

 \Rightarrow Need to develop methods of microstate counting using pure D brane systems.

イロト イポト イヨト イヨト

• $\mathcal{N} = 8$ theory (T^6 compactification).

(for smallest charges positive result in JHEP 10(2014)186 , arXiv:1405.0412 [hep-th] , recent progress for larger charges.)

- $\mathcal{N} = 4$ theory (K3 compactification)
- $\mathcal{N} = 2$ theory, (Calabi Yau compactificaion)

・ロン ・回 と ・ヨン ・ヨン

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Our system

Swapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

<ロ> (四) (四) (注) (注) (注) (三)

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

- *~1/8 BPS black holes in $\mathcal{N}=8$ theory.
- * Relevant index is $B_{14} = \frac{1}{14!} \operatorname{Tr} (-1)^{F} (2J_3)^{14}$ (same as Witten index with Goldstinos removed).
- * Has already been computed by Shih, Strominger, Yin. N_1 KK monopoles associated with x^5 , N_2 units of momentum along the x^5 , N_3 D1 branes along x^5 , N_4 D5-branes along $x^5 \times T^4$ and N_5 units of momentum along the x^4 .

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

 $\ast\,$ Using various dualities, this can be mapped to a pure D brane system.

Table : Brane configuration

* First let us consider $(N_1, N_2, N_3, N_4) = (1, 1, 1, 1)$ case.

The index is known to be 12 in this case.

-

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

What to do ?

- Calculate Witten Index for the given brane system (after throwing the Goldstinos and Godstones).
- ► Only minimum energy modes are relevant → concentrate on 0 modes.
- Witten Index in the SUSY QM (that lives on the intersection of the branes).
- ▶ But how to get that SUSY QM ?

イロト イポト イヨト イヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

What to do ?

- ► Calculate massless open string spectrum in this brane background.
- ► Arrange in SUSY multiplets.
- SUSY dictates their interactions (mostly).
- ▶ Witten Index = Euler characteristic of the vacuum manifold.
- Write down the potential, calculate the Euler number of the vacuum manifold.

イロト イポト イヨト イヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Warm up: 2 intersecting branes

イロン イヨン イヨン イヨン

臣

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

2 Intersecting D-branes

Table : Brane configuration

brane	123	45	67	89
1 D2				
1 D2			\checkmark	

・ロト ・日本 ・モト ・モト

臣

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

SUSY multiplets

Preserved number of supercharges = $32/(2 \times 2) = 8$ \Rightarrow Arrange fields in $\mathcal{N} = 2$ multiplets.

Table : $\mathcal{N} = 2$ multiplets

Fields	$\mathcal{N}=2$ multiplet
$V^{(i)}, \Phi_3^{(i)}$	$\mathcal{N}=2$ vector multiplets
$\Phi_1^{(i)}, \Phi_2^{(i)}$	$\mathcal{N}=2$ hypermultiplet
$Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ hypermultiplet

・ロト ・日ト ・ヨト ・ヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Physical interpretation of bosonic fields

Table : Interpretation of on brane fields

Fields	Physical Interpretation
$V^{(1)}$	1, 2, 3 coordinates of 1-st brane.
$\Phi_1^{(1)}$	Wilson lines of the 1-st brane along $4,5$.
$\Phi_{2}^{(1)}$	6,7 coordinates of 1-st brane.
$\Phi_{3}^{(1)}$	8,9 coordinates of 1-st brane.

・ロト ・回ト ・ヨト ・ヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Interactions of the multiplets

Table : Interactions

Fields	Interactions
$V, \Phi_1, \Phi_2, \Phi_3$	$\mathcal{N}=4$ SYM (free for U(1))
$V^{(1)} - V^{(2)}, \Phi_3^{(1)} - \Phi_3^{(2)}, Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ vector $+$ $\mathcal{N}=2$ hyper

・ロト ・日本 ・モト ・モト

3

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Superpotentials

• $\mathcal{W}_{\mathcal{N}=4} \sim \mathrm{Tr} \left(\Phi_1[\Phi_2, \Phi_3] \right)$

vanishes for Abelian case.

• $\mathcal{W}_{\mathcal{N}=2} \sim Z^{(12)} (\Phi_3^{(1)} - \Phi_3^{(2)}) Z^{(21)}$

Mixed strings sense separation of branes.

・ロト ・回ト ・ヨト ・ヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Table : Goldstones

Goldstone	Physical interpretation
$A^{(1)}_{\mu} + A^{(2)}_{\mu}$	c.o.m along flat directions
$\phi_1^{(1)}$	Wilson line
$\phi_2^{(2)}$	Wilson line
$\phi_2^{(1)}$	1st brane moving along 2nd brane
$\phi_1^{(2)}$	2nd brane moving along 1st brane
$\phi_3^{(1)} + \phi_3^{(2)}$	c.o.m along x^8, x^9

6 Goldstones \rightarrow 6 Goldstinos \rightarrow 4 \times 6 = 24 broken SUSY \therefore 32 - 24 = 8 remaining SUSY.

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

The actual problem

wapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

イロン イボン イモン イモン 三日

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

The actual problem

Table : Brane configuration

- $\blacktriangleright \text{ preserved SUSY}: \mathcal{N} = 1$
- ► The Lagrangian :

$$L = \sum_{i=1}^{4} (\mathcal{N} = 4 SYM)_i + \sum_{(ij); i, j=1}^{4} (\mathcal{N} = 2)_{(ij)} + \mathcal{W}_{\mathcal{N} = 1}$$

Black Hole Microstate Counting using Pure D-brane Systems

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

Various pieces of $\mathcal{W}_{\mathcal{N}=1}$

 $\blacksquare \mathcal{W}_{\mathcal{N}=1} = \mathcal{W}_1 + \mathcal{W}_2$

- * has origin in 3 string interaction.
- * the constant C and the signs are in principle calculable from 3 string amplitudes.

$\blacksquare \ \mathcal{W}_2 = c^{(12)}(\Phi_3^1 - \Phi_3^2) + \dots$

- * caused by metric and B field fluctuations.
- * as a side effect this introduces FI parameters.
- $\ast\,$ both \mathcal{W}_2 and FI parameters have the effect of making the mixed strings non vanishing.

イロン イ部ン イヨン イヨン 三日

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

The vacuum manifold

- $V = V_D + V_F$
 - D term :

D term eqn + gauge invariance = complexified gauge invariance \therefore $\mathit{U}(1)^3 \to (\mathcal{C}^*)^3$

- * 6 ϕ -s, all neutral.
- * 12 z-s, all charged \rightarrow 12-3=9 dimensional toric variety.

F term :

- $* \phi$ -s are uniquely fixed in terms of z-s \rightarrow can be safely forgotten.
- * 9 equations involving only z-s. Thus,

vacuum manifold \rightarrow intersection of hypersurfaces in a toric variety.

イロト イポト イヨト イヨト 二日

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

The equations (in homogeneous coordinates)

ϕ eqns :

 $z_{ij}z_{ji}=-c_{ij}$

- \Rightarrow all *z*-s are non-zero
- \Rightarrow a single patch of the toric variety suffices.
- \Rightarrow can be treated as equations on \mathbb{C}^9 .

z eqns :

- * ϕ -s are fixed in terms of z-s
- * consistency conditions:

 $\begin{aligned} z_{23}z_{31}z_{12} + z_{23}z_{34}z_{42} &= z_{32}z_{21}z_{13} + z_{32}z_{24}z_{43} \\ z_{24}z_{41}z_{12} + z_{24}z_{43}z_{32} &= z_{42}z_{21}z_{14} + z_{42}z_{23}z_{34} \\ z_{34}z_{42}z_{23} - z_{34}z_{41}z_{13} &= z_{43}z_{31}z_{14} + z_{43}z_{32}z_{44} \end{aligned}$

9 equations on 9 $\mathbb C$ variables \Rightarrow vacuum manifold is 0 dimensional

・同 ト ・ ヨ ト ・ ヨ ト … ヨ

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

Affine coordinates (on relevant patch)

- $u_1 \equiv z_{12} z_{21}$
- $u_2 \equiv z_{23}z_{32}$
- $u_3 \equiv z_{31} z_{13}$
- $u_4 \equiv z_{14}z_{41}$
- $u_5 \equiv z_{24}z_{42}$
- $u_6 \equiv z_{34}z_{43}$
- $u_7 \equiv z_{12} z_{24} z_{41}$
- $u_8 \equiv z_{13} z_{34} z_{41}$
- $u_9 \equiv z_{23} z_{34} z_{42}$

イロト イヨト イヨト イヨト

3

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

The final result

Number of solutions =12

exactly the expected result !

・ロト ・回ト ・ヨト ・ヨト

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

larger charges: difficulty

Natural attempt \rightarrow formulate the problem in terms gauge invariant objects.

- * variables are now vectors and matrices.
- $\ast\,$ Affine coordinates \rightarrow generators of the ring of invariants.
- Generally such a ring contains more generators than naively expected and some compenstaing syzygies.
 We are unaware of any straightforward formula for the generators (and syzygies) of this ring.
 checking by hand is a hopeless task.

イロト イポト イヨト イヨト

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

larger charges: possible methods

- nice method : Hilbert series + computer algebra
 - Hilbert series: knows about number of monomials for any given charge, for a graded polynomial ring.
 - If the vacuum variety is zero dimensional, the the number of points can be read from the Hilbert series (after some manipulations).
 - Given the variables and their charges, Macaulay2 can generate the Hilbert series.
 - did not work out due to computational limitations :(

I naive method : Gauge fix !

It works !

イロト イポト イヨト イヨト

Motivation Our system Warm up: 2 intersecting branes **The actual problem** Towards a conjecture . . .

- ▶ We are able to handle these cases by gauge fixing.
- Degeneracies are known to be 56 for (1,1,1,2) and 208 for (1,1,1,3).
- ▶ We are able to get the same result.

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

Towards a conjecture . . .

Swapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

<ロ> (四) (四) (三) (三) (三)

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

zero angular momenta microstates

- * Matching index does not imply one to one matching of the microstates.
- * In gravity side, (single centred) SUSY black holes define an ensemble of states with strictly 0 angular momenta, i.e. all bosonic.
- * In our work we are able to capture the microstates themsleves and find they are all zero angular momentum as well !

* suspicion : Is this true at a generic point of moduli space ?

イロト イポト イヨト イヨト

Motivation Our system Warm up: 2 intersecting branes The actual problem Towards a conjecture . . .

suspicion to conjecture

known results do not contradict the proposed conjecture.

- * When blackhole description is valid, microstates of single centred black holes are all zero angular momentum.
- * In existing computations, index usually takes contribution from both bosonic and fermionic states.

But such computations usualy take various moduli to vanish, hence are not done in a generic point of moduli space.

* On the contrary, our computation requires turning on various moduli, hence is being done at a "generic point".

guideline for fuzzball program : In order to be trustable as black hole microstates, solutions must be constructed at a generic point of moduli space and have zero angular momentum there.

Conclusion

Swapnamay Mondal Black Hole Microstate Counting using Pure D-brane Systems

æ

Summary and scorecard

- * Initial motivation: to develop methods for microstate counting using pure D brane systems.
- We tested our methods for 1/8 BPS pure D brane configuration in type IIA theory for a few small charges.
 These at the least are some more non trivial checks of U duality.
- * All our microstates are zero angular momentum and hence in one to one correspondence with black hole microstates.
- * In the view of other known results, we are led to the conjecture that at a generic point of moduli space all microstates of a single centred black hole have zero angular momentum.

소리가 소문가 소문가 소문가

- * Counting the index for large charges.
- * Apply similar techniques to $\mathcal{N} = 4$ theory. (We are thinking of starting with T^4/\mathbb{Z}_2 and then blowing up to K3.)
- $\ast\,$ Apply similar techniques to $\mathcal{N}=2$ theory.

(4月) (4日) (4日)

thank you !

<ロ> (四) (四) (三) (三) (三) (三)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

The equations (in affine coordinates)

$$m_{13}u_7^2u_9^2 - m_{23}m_{34}m_{24}^2u_7u_8 + m_{24}u_7u_8u_9^2 - m_{24}m_{23}m_{12}u_8^2 = 0$$

$$u_7^2u_9 - u_7u_9^2 + m_{23}m_{24}m_{34}u_7 - m_{12}m_{14}m_{24}u_9 = 0$$

$$u_8^2u_9 + u_8u_9^2 - m_{23}m_{24}m_{34}u_8 - m_{13}m_{14}m_{34}u_9 = 0.$$

with $m_{ij} = -c_{ij}$

| 4 回 2 4 U = 2 4 U

The system concerned

Original System IIB on T^6 , D1-D5 system (some results are known here)	$\begin{array}{c} \mbox{D Dual} \\ \mbox{IIA on } \mathcal{T}^6 \mbox{, only R-R charges} \\ \mbox{(computations } \Rightarrow \mbox{check of U duality)} \end{array}$
KK along 4	D2-branes along 45
momentum along 5	D2-branes along 67
D1-brane along 5	D2-branes along 89
D5-brane along 56789	D6-branes along 456789
momentum along 4	D4-branes along 4589

イロト イヨト イヨト イヨト

æ

Dualities relating two systems

- T duality along 4-5
- I duality along 6-7
- S duality
- T duality along 5-8-9

-

Thumb Rules: S Duality

Initial configuration	Final configuration
momentum	momentum
F1	D1
D1	F1
KK monopole	KK monopole
NS5 brane	D5 brane
D3 brane	D3 brane

Table : S Duality

イロト イヨト イヨト イヨト

æ

Thumb Rules: T Duality

Initial configuration	Final configuration
momentum (4)	F1 (4)
F1 (4)	momentum (4)
momentum $(a), a \neq 4$	momentum (<i>a</i>)
F1 (<i>a</i>), <i>a</i> ≠ 4	F1 (a)
KK monopole (4)	NS5 (56789)
NS5 (5-6-7-8-9)	KK monopole (4)
KK monopole (a), $a \neq 4$	KK monopole (a), $a \neq 4$
NS 5 (4) \times T^4	NS5 (4) \times T^4

Table : T Duality (along X^4)

・ロト ・回ト ・ヨト ・ヨト

3

on the signs in $\mathcal{W}_{\mathcal{N}=1}$

- ▶ Look at exchange symmetries such as $(x^4 \leftrightarrow x^6, x^5 \leftrightarrow x^7)$, alongwith exchange of brane indices.
- ► various components of g_{ij}, b_{ij} gets exchanges and/or picks up signs → so do c^{ij}-s.
- ▶ Through W_2 this affects Φ -s, that in turn affect Z-s through $ZZ\Phi$.
- Demanding invariance of W₁ gives a set of possible choices of relative signs.
- ▶ All these choices are related through $Z^{ij} \rightarrow -Z^{ij}$ field redefinitions.
- ▶ We work with the choice where only Z¹³Z³⁴Z⁴¹ term appears with negative sign.