Black Hole Microstate Counting using Pure D-brane Systems

Swapnamay Mondal
HRI, Allahabad, India

11.19.2015

UC Davis, Davis

based on JHEP10(2014)186 [arXiv:1405.0412] and upcoming paper with Abhishek Chowdhury, Richard Garavuso \& Ashoke Sen

Plan of the talk

■ Overview
■ Our work

* Motivation
* Our system
* Warm up : an easier toy
* Actual system
* Towards a conjecture
- Conclusion

Summary

■ Long term goal:
to perform exact microscopic counting in $\mathcal{N}=2$ theories using pure D brane systems.

- In these works, we test our methods for an intersecting D brane system in type IIA string theory, compactified on T^{6} and our computation yields the expected result.
- All microstates we find carry zero angular momentum.
conjecture : At a generic point in moduli space, microstates of a single centred black hole all carry zero angular momentum.

Our conjecture has interesting impact on fuzzball program.

Overview

Black Holes: General Introduction

- Special solutions of Einstein's equations, in which there is a region of space time, bounded by an "event horizon", from which nothing can escape!
- They have been observed in our universe. (Hence not just a fancy theoretical stuff !)
- Black holes solutions are completely specified by only a few parameters (like mass, charge, angular momentum) \Rightarrow regarded as thermodynamical system, there seems to be no microstates, hence no entropy.

Black Holes should have entropy

What if black holes do not have entropy ?

2 $2^{\text {nd }}$ law in danger: What happens to the entropy of a bucket of hot water, when thrown into a black hole ?

近 postdiction in danger: If black holes do not have any microstates, how does it remeber the state of the star that colapsed into a black hole ?

Black Holes better have microstates and entropy.

Any candidate for entropy of a black hole?

- Laws of black hole mechanics \Rightarrow area of event horizon never decreases.
- Black Hole entropy \propto Black Hole area [proportionality constant] $=$ length $^{-2}\left(\right.$ in units $\left.k_{B}=1\right)$.
- But there is no natural length scales in classical physics!
- There is Planck length in quantum gravity.

Lesson: black hole entropy is a window to quantum gravity !

Importance for a theory of quantum gravity

\square What is the statistical understanding of entropy ?
Since classical gravity deos not answer this, it is for a quantum theory of gravity to answer this question.

- A test for quantum gravity :

There may be many phases of a theory of quantum gravity, many of them would have black hole solutions. For each of them this question can be posed and must be answered.
■ An opportunity!
An experimental test of any theory of quantum gravity is highly unlikely in near future.
\Rightarrow Theoretical tests such as this provide opportunities to check whether such a theory is consistent.

Score card of string theory

very high score!

* In string theory one can answer this question (with high accuracy) for phases with high enough supersymmetry.

Many fascinating features of string theory (SUSY, dualities, AdS/CFT, extra dimensions) appear together in this problem. Thus success in this direction validates the very structure of string theory.

* Considerable progress has been achieved for $\mathcal{N}=8, \mathcal{N}=4$ theories.
* Not much achievement for $\mathcal{N}=2$ theories.

The general story

- In supersymmetric theories certain quantities (called index) do not change as one changes the coupling of the theory.
- For supersymmetric black holes, one can relate degeneracy to index. It is enough to be able to compute the index for any coupling.
- Black holes are good descriptions for small G, large GM.
- microscopic description : For smaller G, small GM gravity is decoupled and the system contains stringy objects (like D branes). Computing index is easier in this description.
- How to get to microscopic description?

Track the charges carried by the black hole.

Our Work

Warm up: 2 intersecting branes
The actual problem
Towards a conjecture

Motivation

D brane systems are special

Only option for microscopic system in $\mathcal{N}=2$ theories (CY3 compactifications).
\Rightarrow Need to develop methods of microstate counting using pure D brane systems.

Steps . . .

- $\mathcal{N}=8$ theory (T^{6} compactification).
(for smallest charges positive result in JHEP 10(2014)186, arXiv:1405.0412 [hep-th], recent progress for larger charges.)
- $\mathcal{N}=4$ theory (K3 compactification)
- $\mathcal{N}=2$ theory, (Calabi Yau compactificaion)

Our system

Our system

* $1 / 8$ BPS black holes in $\mathcal{N}=8$ theory.
* Relevant index is $B_{14}=\frac{1}{14!} \operatorname{Tr}(-1)^{F}\left(2 J_{3}\right)^{14}$ (same as Witten index with Goldstinos removed).
* Has already been computed by Shih, Strominger, Yin. $N_{1} \mathrm{KK}$ monopoles associated with x^{5}, N_{2} units of momentum along the x^{5}, N_{3} D1 branes along x^{5}, N_{4} D5-branes along $x^{5} \times T^{4}$ and N_{5} units of momentum along the x^{4}.

Our system

* Using various dualities, this can be mapped to a pure D brane system.

Table: Brane configuration

brane	123	45	67	89
N_{1} D2		$\sqrt{ }$		
N_{2} D2			$\sqrt{ }$	
N_{3} D2				$\sqrt{ }$
N_{4} D6		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

* First let us consider $\left(N_{1}, N_{2}, N_{3}, N_{4}\right)=(1,1,1,1)$ case.

The index is known to be 12 in this case.

What to do ?

- Calculate Witten Index for the given brane system (after throwing the Goldstinos and Godstones).
- Only minimum energy modes are relevant \rightarrow concentrate on 0 modes.
- Witten Index in the SUSY QM (that lives on the intersection of the branes).
- But how to get that SUSY QM ?

What to do ?

- Calculate massless open string spectrum in this brane background.
- Arrange in SUSY multiplets.
- SUSY dictates their interactions (mostly).
- Witten Index = Euler characteristic of the vacuum manifold.
- Write down the potential, calculate the Euler number of the vacuum manifold.

Warm up: 2 intersecting branes

2 Intersecting D-branes

Table: Brane configuration

brane	123	45	67	89
1 D2		$\sqrt{ }$		
1 D2			$\sqrt{ }$	

SUSY multiplets

Preserved number of supercharges $=32 /(2 \times 2)=8$ \Rightarrow Arrange fields in $\mathcal{N}=2$ multiplets .

Table: $\mathcal{N}=2$ multiplets

Fields	$\mathcal{N}=2$ multiplet
$V^{(i)}, \Phi_{3}^{(i)}$	$\mathcal{N}=2$ vector multiplets
$\Phi_{1}^{(i)}, \Phi_{2}^{(i)}$	$\mathcal{N}=2$ hypermultiplet
$Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ hypermultiplet

Physical interpretation of bosonic fields

Table: Interpretation of on brane fields

Fields	Physical Interpretation
$V^{(1)}$	$1,2,3$ coordinates of 1-st brane.
$\Phi_{1}^{(1)}$	Wilson lines of the 1-st brane along 4,5.
$\Phi_{2}^{(1)}$	6,7 coordinates of 1-st brane.
$\Phi_{3}^{(1)}$	8,9 coordinates of 1-st brane.

Interactions of the multiplets

Table: Interactions

Fields	Interactions
$V, \Phi_{1}, \Phi_{2}, \Phi_{3}$	$\mathcal{N}=4$ SYM (free for $\mathrm{U}(1)$)
$V^{(1)}-V^{(2)}, \Phi_{3}^{(1)}-\Phi_{3}^{(2)}, Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ vector $+\mathcal{N}=2$ hyper

Superpotentials

- $\mathcal{W}_{\mathcal{N}=4} \sim \operatorname{Tr}\left(\Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]\right)$
vanishes for Abelian case.
- $\mathcal{W}_{\mathcal{N}=2} \sim Z^{(12)}\left(\Phi_{3}^{(1)}-\Phi_{3}^{(2)}\right) Z^{(21)}$

Mixed strings sense separation of branes.

Goldstones

Table: Goldstones

Goldstone	Physical interpretation
$A_{\mu}^{(1)}+A_{\mu}^{(2)}$	c.o.m along flat directions
$\phi_{1}^{(1)}$	Wilson line
$\phi_{2}^{(2)}$	Wilson line
$\phi_{2}^{(1)}$	1st brane moving along 2nd brane
$\phi_{1}^{(2)}$	2nd brane moving along 1st brane
$\phi_{3}^{(1)}+\phi_{3}^{(2)}$	c.o.m along x^{8}, x^{9}

6 Goldstones $\rightarrow 6$ Goldstinos $\rightarrow 4 \times 6=24$ broken SUSY
$\therefore 32-24=8$ remaining SUSY.

The actual problem

The actual problem

Table: Brane configuration

brane	123	45	67	89
1 D2		$\sqrt{ }$		
1 D2			$\sqrt{ }$	
1 D2				$\sqrt{ }$
1 D6		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

- preserved SUSY: $\mathcal{N}=1$
- The Lagrangian :

$$
L=\sum_{i=1}^{4}(\mathcal{N}=4 S Y M)_{i}+\sum_{(i j) ; i, j=1}^{4}(\mathcal{N}=2)_{(i j)}+\mathcal{W}_{\mathcal{N}=1}
$$

Various pieces of $\mathcal{W}_{\mathcal{N}=1}$

$\square \mathcal{W}_{\mathcal{N}=1}=\mathcal{W}_{1}+\mathcal{W}_{2}$

- $\mathcal{W}_{1}=\sqrt{2} C \sum_{(i j) ; i, j=1}^{4}(s i g n) Z^{i j} Z^{j k} Z^{k i}$
* has origin in 3 string interaction.
* the constant C and the signs are in principle calculable from 3 string amplitudes.
- $\mathcal{W}_{2}=c^{(12)}\left(\Phi_{3}^{1}-\Phi_{3}^{2}\right)+\ldots$
* caused by metric and B field fluctuations.
* as a side effect this introduces FI parameters.
* both \mathcal{W}_{2} and FI parameters have the effect of making the mixed strings non vanishing.

The vacuum manifold

$V=V_{D}+V_{F}$
■ D term :
D term eqn + gauge invariance $=$ complexified gauge invariance
$\therefore U(1)^{3} \rightarrow\left(\mathcal{C}^{*}\right)^{3}$

* 6ϕ-s, all neutral.
* $12 z$-s, all charged $\rightarrow 12-3=9$ dimensional toric variety.

■ F term:

* ϕ-s are uniquely fixed in terms of z-s \rightarrow can be safely forgotten.
* 9 equations involving only z-s. Thus, vacuum manifold \rightarrow intersection of hypersurfaces in a toric variety.

The equations (in homogeneous coordinates)

■ ϕ eqns:
$z_{i j} z_{j i}=-c_{i j}$
\Rightarrow all z-s are non-zero
\Rightarrow a single patch of the toric variety suffices.
\Rightarrow can be treated as equations on \mathbb{C}^{9}.
■ z eqns:

* ϕ-s are fixed in terms of z-s
* consistency conditions:

$$
\begin{aligned}
& z_{23} z_{31} z_{12}+z_{23} z_{34} z_{42}=z_{32} z_{21} z_{13}+z_{32} z_{24} z_{43} \\
& z_{24} z_{41} z_{12}+z_{24} z_{43} z_{32}=z_{42} z_{21} z_{14}+z_{42} z_{23} z_{34} \\
& z_{34} z_{42} z_{23}-z_{34} z_{41} z_{13}=z_{43} z_{31} z_{14}+z_{43} z_{32} z_{24}
\end{aligned}
$$

- 9 equations on $9 \mathbb{C}$ variables \Rightarrow vacuum manifold is 0 dimensional

Affine coordinates (on relevant patch)

$$
\begin{aligned}
u_{1} & \equiv z_{12} z_{21} \\
u_{2} & \equiv z_{23} z_{32} \\
u_{3} & \equiv z_{31} z_{13} \\
u_{4} & \equiv z_{14} z_{41} \\
u_{5} & \equiv z_{24} z_{42} \\
u_{6} & \equiv z_{34} z_{43} \\
u_{7} & \equiv z_{12} z_{24} z_{41} \\
u_{8} & \equiv z_{13} z_{34} z_{41} \\
u_{9} & \equiv z_{23} z_{34} z_{42}
\end{aligned}
$$

The final result

Number of solutions $=12$

 exactly the expected result!
larger charges: difficulty

Natural attempt \rightarrow formulate the problem in terms gauge invariant objects.

* variables are now vectors and matrices.
* Affine coordinates \rightarrow generators of the ring of invariants.
* Generally such a ring contains more generators than naively expected and some compenstaing syzygies.
We are unaware of any straightforward formula for the generators (and syzygies) of this ring. checking by hand is a hopeless task.

larger charges: possible methods

- nice method: Hilbert series + computer algebra
- Hilbert series: knows about number of monomials for any given charge, for a graded polynomial ring.
- If the vacuum variety is zero dimensional, the the number of points can be read from the Hilbert series (after some manipulations).
- Given the variables and their charges, Macaulay2 can generate the Hilbert series.
- did not work out due to computational limitations:(

■ naive method: Gauge fix!
It works !

$(1,1,1,2)$ and $(1,1,1,3)$

- We are able to handle these cases by gauge fixing.
- Degeneracies are known to be 56 for $(1,1,1,2)$ and 208 for $(1,1,1,3)$.
- We are able to get the same result.

Towards a conjecture . . .

zero angular momenta microstates

* Matching index does not imply one to one matching of the microstates.
* In gravity side, (single centred) SUSY black holes define an ensemble of states with strictly 0 angular momenta, i.e. all bosonic.
* In our work we are able to capture the microstates themsleves and find they are all zero angular momentum as well!
* suspicion: Is this true at a generic point of moduli space ?

suspicion to conjecture

known results do not contradict the proposed conjecture.

* When blackhole description is valid, microstates of single centred black holes are all zero angular momentum.
* In existing computations, index usually takes contribution from both bosonic and fermionic states. But such computations usualy take various moduli to vanish, hence are not done in a generic point of moduli space.
* On the contrary, our computation requires turning on various moduli, hence is being done at a "generic point".
guideline for fuzzball program : In order to be trustable as black hole microstates, solutions must be constructed at a generic point of moduli space and have zero angular momentum there.

Conclusion

Summary and scorecard

* Initial motivation: to develop methods for microstate counting using pure D brane systems.
* We tested our methods for $1 / 8 \mathrm{BPS}$ pure D brane configuration in type IIA theory for a few small charges.
These at the least are some more non trivial checks of U duality.
* All our microstates are zero angular momentum and hence in one to one correspondence with black hole microstates.
* In the view of other known results, we are led to the conjecture that at a generic point of moduli space all microstates of a single centred black hole have zero angular momentum.

Future taks

* Counting the index for large charges.
* Apply similar techniques to $\mathcal{N}=4$ theory. (We are thinking of starting with T^{4} / \mathbb{Z}_{2} and then blowing up to $K 3$.)
* Apply similar techniques to $\mathcal{N}=2$ theory.

The equations (in affine coordinates)

$$
\begin{aligned}
m_{13} u_{7}^{2} u_{9}^{2}-m_{23} m_{34} m_{24}^{2} u_{7} u_{8}+m_{24} u_{7} u_{8} u_{9}^{2}-m_{24} m_{23} m_{12} u_{8}^{2} & =0 \\
u_{7}^{2} u_{9}-u_{7} u_{9}^{2}+m_{23} m_{24} m_{34} u_{7}-m_{12} m_{14} m_{24} u_{9} & =0 \\
u_{8}^{2} u_{9}+u_{8} u_{9}^{2}-m_{23} m_{24} m_{34} u_{8}-m_{13} m_{14} m_{34} u_{9} & =0
\end{aligned}
$$

with $m_{i j}=-c_{i j}$

The system concerned

Original System D Dual

IIB on T^{6}, D1-D5 system (some results are known here)

IIA on T^{6}, only R-R charges
(computations \Rightarrow check of U duality)

KK along 4
momentum along 5
D1-brane along 5
D5-brane along 56789 momentum along 4

D2-branes along 45
D2-branes along 67
D2-branes along 89
D6-branes along 456789
D4-branes along 4589

Dualities relating two systems

(1) T duality along 4-5
(2) T duality along 6-7
(3) S duality
(3) T duality along 5-8-9

Thumb Rules: S Duality

Initial configuration	Final configuration
momentum	momentum
F1	D1
D1	F1
KK monopole	KK monopole
NS5 brane	D5 brane
D3 brane	D3 brane

Table: S Duality

Thumb Rules: T Duality

Initial configuration	Final configuration
momentum (4)	F1 (4)
F1 (4)	momentum (4)
momentum $(a), a \neq 4$	momentum (a)
F1 $(a), a \neq 4$	F1 (a)
KK monopole (4)	NS5 (56789)
NS5 $(5-6-7-8-9)$	KK monopole (4)
KK monopole $(a), a \neq 4$	KK monopole $(a), a \neq 4$
NS 5 $(4) \times T^{4}$	NS5 $(4) \times T^{4}$

Table: T Duality (along X^{4})
on the signs in $\mathcal{W}_{\mathcal{N}=1}$

- Look at exchange symmetries such as $\left(x^{4} \leftrightarrow x^{6}, x^{5} \leftrightarrow x^{7}\right)$, alongwith exchange of brane indices.
- various components of $g_{i j}, b_{i j}$ gets exchanges and/or picks up signs \rightarrow so do $c^{i j}$-s.
- Through \mathcal{W}_{2} this affects Φ-s, that in turn affect Z-s through $Z Z \Phi$.
- Demanding invariance of \mathcal{W}_{1} gives a set of possible choices of relative signs.
- All these choices are related through $Z^{i j} \rightarrow-Z^{i j}$ field redefinitions.
- We work with the choice where only $Z^{13} Z^{34} Z^{41}$ term appears with negative sign.

